
Synthesizing Data Structure Refinements from

Integrity Constraints

Shankara Pailoor

University of Texas at Austin

Austin, Texas, USA

spailoor@cs.utexas.edu

Yuepeng Wang

University of Pennsylvania

Philadelphia, Pennsylvania, USA

yuepeng@seas.upenn.edu

Xinyu Wang

University of Michigan, Ann Arbor

Ann Arbor, Michigan, USA

xwangsd@umich.edu

Isil Dillig

University of Texas at Austin

Austin, Texas, USA

idillig@cs.utexas.edu

Abstract

Implementations of many data structures use several corre-

lated fields to improve their performance; however, incon-

sistencies between these fields can be a source of serious

program errors. To address this problem, we propose a new

technique for automatically refining data structures from in-

tegrity constraints. In particular, consider a data structure 𝐷

with fields 𝐹 and methods𝑀 , as well as a new set of auxiliary

fields 𝐹 ′ that should be added to 𝐷 . Given this input and an

integrity constraint Φ relating 𝐹 and 𝐹 ′, our method automat-

ically generates a refinement of 𝐷 that satisfies the provided

integrity constraint. Our method is based on a modular in-
stantiation of the CEGIS paradigm and uses a novel inductive

synthesizer that augments top-down search with three key

ideas. First, it computes necessary preconditions of partial
programs to dramatically prune its search space. Second, it

augments the grammar with promising new productions

by leveraging the computed preconditions. Third, it guides

top-down search using a probabilistic context-free grammar

obtained by statically analyzing the integrity checking func-

tion and the original code base. We evaluated our method

on 25 data structures from popular Java projects and show

that our method can successfully refine 23 of them. We also

compare our method against two state-of-the-art synthesis

tools and perform an ablation study to justify our design

choices. Our evaluation shows that (1) our method is suc-

cessful at refining many data structure implementations in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454063

the wild, (2) it advances the state-of-the-art in synthesis, and

(3) our proposed ideas are crucial for making this technique

practical.

CCS Concepts: • Software and its engineering→ Gen-

eral programming languages.

Keywords: Programming Languages, Program Synthesis,

Data structure refinement

ACM Reference Format:

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig.

2021. Synthesizing Data Structure Refinements from Integrity Con-

straints. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’21), June 20–25, 2021, Virtual, Canada. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3453483.3454063

1 Introduction

It is well known that implementations of most data types use

auxiliary fields to improve performance. For example, a pro-

gram that needs to perform frequent bidirectional look-ups

may explicitly store two different mappings 𝑀 : 𝜏1 → 𝜏2
and 𝑀−1 : 𝜏2 → 𝜏1 even though one can be derived from

the other. Similarly, programmers may tore the same infor-

mation as both a linked list and a hash map to efficiently

implement different types of functionality. As a final example,

Figure 1 shows a class called SpdySession from the Netty

project [5] that maintains two auxiliary fields called als and
ars. Even though these fields can be derived from the core

data structure called actStream, doing so would hurt the

application’s performance.

While it is quite common to maintain such auxiliary states

for performance reasons, correctly maintaining all related

copies of the same data can be a source of bugs and secu-

rity vulnerabilities. For instance, several prior efforts study

violations of consistency requirements in data structures

and propose techniques for mitigating them [12–15, 27, 28].

In addition, The Common Vulnerabilities and Exposures

(CVE) database reports several security vulnerabilities that

https://doi.org/10.1145/3453483.3454063
https://doi.org/10.1145/3453483.3454063

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

are caused by violations of integrity constraints between

their fields [1–4].

Motivated by this problem, this paper proposes a new

synthesis-based approach for automatically refining imple-

mentations of data types given integrity constraints between

their fields. In particular, given a data structure 𝐷 consisting

of fields 𝐹 and methods𝑀 as well as a set of new fields 𝐹 ′ to
be added to 𝐷 , our approach generates a new data structure

𝐷 ′ with fields 𝐹 ∪ 𝐹 ′ and a set of updated methods𝑀 ′ such
that (1) 𝐷 ′ is functionally equivalent to 𝐷 , and (2) the imple-

mentation of 𝐷 ′ satisfies a user-provided integrity constraint
Φ(𝐹, 𝐹 ′) that expresses consistency requirements between

these fields. Specifically, our method takes as input a Java

class 𝐷 and an integrity constraint (expressed in Java as a

consistency checking function) and produces a new class 𝐷 ′

that is a refinement of 𝐷 . Thus, programmers can first focus

on implementing functionally correct software and then use

our approach to automatically refine their implementation

in a way that ensures consistency.

In order to solve this problem, our approach needs to

synthesize code that correctly updates the new fields such

that the integrity constraints are satisfied. However, this

synthesis task is quite challenging for several reasons: First,

since these new fields may be complex user-defined data

structures, the update logic is often non-trivial and requires

synthesizing arbitrary Java code, including loops or introduc-

tion of new program variables. Second, data structures often

contain multiple methods that update the relevant fields;

thus, the synthesis problem is not localized to a single func-

tion. Finally, the update logic may require invoking other

functions from libraries or the surrounding code base; hence,

the synthesizer needs to consider an enormous number of

building blocks from which to generate code.

In this paper, we address these challenges using a mod-
ular instantiation of the counterexample-guided inductive

synthesis (CEGIS) paradigm powered by a novel inductive

synthesis engine. In particular, our method is modular in

the sense that it decomposes the data structure refinement

problem into independent synthesis subproblems over a sin-

gle procedure. For each subproblem, we use an inductive

synthesizer based on top-down enumerative search to find

code snippets that satisfy a given set of (counter-)examples

and then check correctness of the synthesized code using a

verifier. However, to make inductive synthesis tractable in

this setting, we leverage the following three key ideas:

1. PCFG construction via static analysis: Our method

performs static analysis of the integrity checking function

and the surrounding code base to identify important syn-

tactic and semantic clues that are useful for guiding the

underlying search procedure. In particular, our method

leverages the results of static analysis to construct a prob-

abilistic context free grammar (PCFG) and uses this PCFG

to prioritize promising candidates during the search.

2. Pruning via necessary preconditions: Our approach

dramatically prunes its search space using the notion

of necessary preconditions. In particular, given a partial
program 𝑃 with missing statements or expressions, our

method computes a formula 𝜙 that must be satisfied by

every completion of 𝑃 . Thus, if this formula is falsified by

any of the counterexamples, our method can prune the

partial program without sacrificing completeness.

3. Deduction-guided grammar augmentation: In addi-

tion to pruning the search space, necessary preconditions

are also useful for identifying promising code snippets

that are likely to appear in the desired solution. In particu-

lar, our synthesis procedure augments the grammar with

new productions so that promising code snippets need

not be synthesized from scratch. Our method also updates

probabilities in the PCFG in order to prioritize programs

that use these promising code snippets.

Based on the above ideas, we designed and implemented a

new system called Volt for automatically synthesizing data

structure refinements from integrity constraints. To evaluate

Volt, we identified data structures with correlated fields in

widely-used Java projects and used Volt to derive the full

data structure from a version without the auxiliary fields.

Our evaluation shows that Volt can successfully synthesize

92% of these refinements with an average running time of

264.2 seconds per benchmark. We also compare Volt against

two state-of-the-art synthesis tools for Java and show that

Volt dramatically outperforms these tools. Finally, we also

evaluate three different ablations of Volt and show that

our proposed ideas are indeed necessary for making this

approach practical.

In short, this paper makes the following key contributions:

• We propose automatically refining data structures from

integrity constraints in order to correctly implement effi-

cient data structures that utilize many correlated fields.

• We propose a modular algorithm that decomposes the

overall data structure refinement task into procedure-level

synthesis tasks.

• We propose a novel inductive synthesis algorithm that

uses three key ideas, namely (1) PCFG construction using

static analysis, (2) pruning via necessary preconditions,

and (3) dynamic PCFG augmentation and update.

• We conduct an experimental evaluation on 25 real-world

Java programs and compare our method against state-of-

the-art synthesis/repair tools as well as against several

ablations of Volt itself.

2 Overview

In this section we provide a high level overview of our tech-

nique with the aid of the motivating example shown in

Figure 1. The code snippet in Figure 1 belongs to a data

structure called SpdySession used in Netty [5], a frame-

work for developing high-performance protocol servers in

Synthesizing Data Structure Refinements from Integrity Constraints PLDI ’21, June 20–25, 2021, Virtual, Canada

1 public class SpdySession {

2 private Map <Integer , StreamState > actStreams;

3 private AtomicInteger als , ars; // new fields

4 ...

5 public SpdySession () {

6 actStreams = new HashMap <>();

7 // als = new AtomicInteger ();

8 // ars = new AtomicInteger ();

9 }

10

11 int numActiveStreams(bool remote) {...} //

New

12

13 public void acceptStream(int sId , ...) {

14 StreamState newS = new StreamState (...);

15 StreamState oldS = actStreams.put(sid ,

newS);

16 // if (oldS == null) {

17 // if (this.isRemoteInitiatedId(sId)) {

18 // ars.addAndGet (1);

19 // } else {

20 // als.addAndGet (1);

21 // }

22 // }

23 }

24

25 public void removeStream(int sId , ...) {

26 StreamState state =

removeActiveStream(sId);

27 // if (state != null) {

28 // if (this.isRemoteInitiatedId(sId)) {

29 // ars.subAndGet (1);

30 // } else {

31 // als.subAndGet (1);

32 // }

33 // }

34 ...

35 }

36 ...

37 }

Figure 1. SpdySession class from the Netty project. The

auxiliary fields als and ars keep track of the number of

local and remote streams in actStream respectively.

Java. SpdySession tracks active streams using a Concurren-

tHashMap called actStreams (line 2) where keys correspond
to stream identifiers and values are the stream states (encap-

sulated in another data structure called StreamState).
In one of the Github commits, Netty developers added a

new method called numActiveStreams (line 11) to the class

SpdySession. This new method takes as input a boolean

argument called remote and returns the number of remote

or local streams depending on the value of the boolean. A

naive implementation of numActiveStreams would iterate

over the hashmap (actStreams) to count the number of

1 public boolean check(SpdySession s) {

2 int remote = 0, local = 0;

3 for (Integer id : s.actStream) {

4 if (s.isRemoteInitiatedId(id)) remote ++;

5 else local ++;

6 }

7 if (s.als.get() != local || s.ars.get() !=

remote)

8 return false;

9 return true;

10 }

Figure 2. Integrity checking function.

remote/local streams; however, this is obviously quite in-

efficient. Thus, Netty developers add two new fields called

als and ars to keep track of the number of local and re-

mote streams respectively and modify the implementation

of SpdySession to correctly update these fields. In particu-

lar, the commented out (green) lines in Figure 1 are the new

code added to the original code.

Volt usage scenario. Our proposed approach is useful

in a scenario like this for automatically updating the im-

plementation of SpdySession in a correct-by-construction

manner. To use Volt, the user only needs to provide the orig-

inal implementation of SpdySession, the names of the new

fields (ars and als), and an integrity constraint expressed

as a function called check in Figure 2. This check function
iterates over the actStream hashmap and counts the num-

ber of remote and local streams. If the remote (resp. local)

stream count is equal to ars (resp. als), check returns true;

otherwise, it returns false.

Given this integrity checking function, Volt automatically

generates the refined data structure in under oneminute. The

new implementation involves changes to 5 of the 42 methods

in SpdySession and is verified to both preserve existing

functionality and satisfy the provided integrity constraint.

Challenges. We now highlight some of the challenges in-

volved in automating data structure refinement. First, when

adding new fields to a data structure, we may need to syn-

thesize new code in multiple methods. For instance, in the

SpdySession example, 10 of the 42 methods in the original

data structure manipulate streams, and 5 of these 10 need

to be modified in order to correctly maintain the new als
and ars fields. Second, modifications to existing methods are

non-trivial: they require adding several lines of code with

nested conditionals (e.g., see lines 16-22) and calling func-

tions like addAndGet that are implemented elsewhere in the

code base. Finally, observe that modifications to each method

are not identical and cannot be simply “copy-pasted”.

The Volt solution. We solve these challenges using a

modular application of the CEGIS paradigm coupled with

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

a novel inductive synthesizer. In particular, Volt performs

synthesis in a modular way by independently updating the

implementation of each method using CEGIS. The inductive

synthesizer used in Volt is based on top-down enumerative

search but takes advantage of three important observations

that allow it to succeed in this setting:

Observation #1: The integrity checker and existing methods in
the code base provide important syntactic clues to the synthe-
sizer. For instance, looking at the implementation of check
from Figure 2, one would expect that isRemoteInitiated
would be useful during synthesis, as the return value of

check depends on that of isRemoteInitiated. In addition,

performing deeper static analysis of existing methods in

the code base can also provide important clues. For example,

addAndGet and subAndGetmethods update variables of type

AtomicInteger, and since the new fields als and ars also
have the same type, these two methods may appear as part

of the solution. To leverage such useful clues during synthe-

sis, our method attaches probabilities to productions in the

context-free grammar. Then, our search algorithm expands

non-terminals according to these probabilities, thereby bias-

ing search towards program that use various clues present

in the integrity checker and the surrounding code base.

Observation #2: We can deductively prune away partial pro-
grams using necessary preconditions. To gain some intuition,

suppose that the inductive synthesizer generates the follow-

ing partial implementation of acceptStream during search:

1 public void acceptStream(int sId , ...) {

2 StreamState newS = new StreamState (...);

3 StreamState oldS = actStreams.put(sid , newS);

4 ??𝑠 ;

5 this.als = new AtomicInteger ();

6 }

Here, ??𝑠 is a hole that can be filled by any arbitrary state-

ment. This partial program is infeasible because, no matter

how we complete the hole, the resulting program will not

satisfy the integrity constraint. In particular, the code snip-

pet above always sets the value of this.als to 0 (the last

line); however, this will violate the integrity constraint if

acceptStream is ever called with a local stream (as it is

added to actStreams on the second line).

Volt can prune such infeasible partial programs by com-

puting a necessary precondition for correctness. A necessary

precondition 𝜙 for a partial program 𝑃 is a constraint on 𝑃 ’s

inputs that must be satisfied by any completion 𝑃 in order

for 𝑃 to satisfy the integrity constraint. Thus, if the current

set of counterexamples includes an input that violates 𝜙 , we

can conclude that the partial program is infeasible – i.e., no

completion of the holes can satisfy the specification.

Going back to our example, the necessary precondition

computed by Volt for the partial program above logically

implies that sid must correspond to a remote (not local)

stream. Thus, if the current counterexamples include a local

stream, Volt can immediately reject this partial program.

Since there are approximately 756k completions of ??𝑠 (up
to size 5), the computation of necessary preconditions allows

our technique to dramatically reduce the search space.

Observation #3: We can use the feedback from the feasibility
checking engine to dynamically augment the PCFG. Consider
the following partial implementation for acceptStream:

1 public void acceptStream(int sId , ...) {

2 StreamState newS = new StreamState (...);

3 StreamState oldS = actStreams.put(sid ,

newS);

4 if (??𝑒) {

5 this.ars.addAndGet(??𝑒);

6 } else {

7 this.als.addAndGet(??𝑒);

8 }

9 }

where lines 4–8 correspond to a sketch – i.e., synthesized

code that does not contain any unknown statements or left-

hand-side expressions. Even though this sketch is infeasible,

its necessary precondition is consistent with many (but not

all) of the counterexamples due to a missing edge case. We

refer to such sketches as partially feasible. Our key observa-

tion is that such partially feasible program sketches often

appear as sub-fragments of the desired solution. For exam-

ple, observe that lines 4–8 above actually appear as a code

snippet within the correct implementation of acceptStream
shown in Figure 1 (lines 17–21). Based on this observation,

our method augments the PCFG with new non-terminals

that correspond to partially feasible program sketches. Since

the addition of the new non-terminals is driven by necessary

preconditions, we refer to this method as deduction-guided
grammar augmentation.

3 Problem Formulation

We formulate the data structure refinement problem with re-

spect to a Java-like statically-typed object-oriented language.

A program in this language is a collection of data structures,

and a data structure is of the form 𝐷 = (𝐹,𝑀) where 𝐹 is

a set of fields and𝑀 is a mapping from method signatures

to their bodies. Without loss of generality, we assume that

every data structure 𝐷 has a unique method called 𝐷0 that

corresponds to its initialization method (constructor). Fields

and variables in 𝐷 are either of type int or Ref(𝐷 ′) where
int denotes integers and Ref(𝐷 ′) denotes the address of

some heap-allocated data structure of type 𝐷 ′. The program
heap H : Ref × Field → Value maps reference and field

pairs to values.

Definition 3.1. (State) A state 𝜎 for a data structure 𝐷 =

(𝐹,𝑀) is a pair (𝑜,H) where 𝑜 is an instance of 𝐷 and heap

H determines the values of 𝑜’s fields.

Synthesizing Data Structure Refinements from Integrity Constraints PLDI ’21, June 20–25, 2021, Virtual, Canada

We say that a state 𝜎 is an initial state for data structure
𝐷 = (𝐹,𝑀) if it is obtained immediately after calling the

constructor 𝐷0 of 𝐷 .

Definition 3.2. (State equality modulo fields) Given a

pair of data structure states 𝜎 = (𝑜,H) and 𝜎 ′ = (𝑜 ′,H ′),
we say that 𝜎 and 𝜎 ′ are equivalent modulo fields 𝐹 , written
𝜎 ≡𝐹 𝜎 ′, iff for every 𝑓 ∈ 𝐹 , we have:
1. H(𝑜, 𝑓) = H ′(𝑜 ′, 𝑓) if 𝑓 has type int
2. If 𝑓 has type Ref(𝐷) for𝐷 = (𝐹 ′, _), then 𝜎1 ≡𝐹 ′ 𝜎2 where

𝜎1 = (H (𝑜, 𝑓),H) and 𝜎2 = (H ′(𝑜 ′, 𝑓),H ′)

In other words, the ≡𝐹 relation indicates deep equality

with respect to fields 𝐹 .

Definition 3.3. (State refinement) Let 𝜎 and 𝜎 ′ be two

states for data structures (𝐹,𝑀) and (𝐹 ′, 𝑀 ′) respectively
where 𝐹 ⊆ 𝐹 ′. We say 𝜎 ′ is a refinement of 𝜎 , written 𝜎 ′ ⪯ 𝜎 ,

iff 𝜎 ≡𝐹 𝜎 ′.

Intuitively, a data structure state 𝜎 ′ refines another state
𝜎 if they are equivalent modulo the fields defined in 𝜎 .

Definition 3.4. (Action) Let𝐷 = (𝐹,𝑀) be a data structure.
An action 𝛼 on 𝐷 is a pair (𝑚, 𝑥) where 𝑚 ∈ Domain(𝑀)
and 𝑥 is a list of arguments for𝑚.

In otherwords, an action corresponds to invoking amethod

of the data structure.

Definition 3.5. (Transition) Let 𝐷 = (𝐹,𝑀) be a data

structure, 𝜎 a state of 𝐷 , and 𝛼 = (𝑚, 𝑥) an action on 𝐷 .

We write 𝜎
𝛼−→ 𝜎 ′ to denote that 𝜎 ′ is the resulting state after

executing method𝑚 on state 𝜎 with arguments 𝑥 . We refer

to (𝜎, 𝛼, 𝜎 ′) as a transition of 𝐷 .

Informally, a transition represents a change in the data

structure’s state after calling a method.

Definition 3.6. (State transition system) The state tran-

sition system 𝑇𝐷 for a data structure 𝐷 is a tuple (𝑆, 𝐼 , 𝐴,→)
where 𝑆 is the set of all possible states of 𝐷 , 𝐼 ⊆ 𝑆 are the set

of initial states, 𝐴 is the set of all possible actions on 𝐷 , and

→ is the transition relation for 𝐷 (i.e., 𝜎 → 𝜎 ′ iff ∃𝛼 ∈ 𝐴

such that (𝜎, 𝛼, 𝜎 ′) is a transition of 𝐷).

We write→∗ to denote the reflexive transitive closure of

→, and we say that 𝜎 is a reachable state of 𝐷 if there exists

a 𝜎0 ∈ 𝐼 such that 𝜎0 →∗ 𝜎 .

Definition 3.7. (Method refinement) Let𝐷 = (𝐹,𝑀) and
𝐷 ′ = (𝐹 ′, 𝑀 ′) be two data structures with corresponding

transition systems𝑇𝐷 = (𝑆, 𝐼 , 𝐴,→) and𝑇𝐷′ = (𝑆 ′, 𝐼 ′, 𝐴′,→′).
The implementation of𝑚 in 𝐷 ′ refines that of𝑚 in 𝐷 , writ-

ten 𝑚𝐷′ ⪯ 𝑚𝐷 , if, for every action 𝛼 = (𝑚, 𝑣), and reach-

able state 𝜎𝑏 ∈ 𝑆 , we have: If 𝜎 ′
𝑏
⪯ 𝜎𝑏 and (𝜎𝑏, 𝛼, 𝜎𝑎) ∈→,

(𝜎 ′
𝑏
, 𝛼, 𝜎 ′𝑎) ∈→′, then 𝜎 ′𝑎 ⪯ 𝜎𝑎 .

Intuitively, the implementation of a method in 𝐷 ′ is a re-
finement of the corresponding method in𝐷 if it preserves the

refinement relation between the states of the data structures

when called with the same arguments.

Definition 3.8. (Data structure refinement) We say a

data structure 𝐷 ′ = (𝐹 ′, 𝑀 ′) is a refinement of 𝐷 = (𝐹,𝑀),
written 𝐷 ′ ⪯ 𝐷 , if the following conditions are satisfied: (1)

𝐹 ⊆ 𝐹 ′ and (2)Domain(𝑀) = Domain(𝑀 ′) and (3) For every
method𝑚 ∈ Domain(𝑀), 𝑚𝐷′ ⪯ 𝑚𝐷 .

In other words, a data structure 𝐷 ′ refines 𝐷 if the set of

fields of 𝐷 ′ is a superset of those of 𝐷 and, for every method

𝑚 in 𝐷 and its corresponding method𝑚′ in 𝐷 ′,𝑚′ refines𝑚.

Definition 3.9. (Integrity constraint) Let𝐷 be a data struc-

ture with fields 𝐹 ∪ 𝐹 ′. An integrity constraint Φ𝑐 for fields

𝐹 ′ is a function that takes as input a data structure state 𝜎 of

𝐷 and returns a boolean value such that:

∀𝜎, 𝜎 ′ ∈ Reachable(𝐷).
Φ𝑐 (𝜎) ∧ Φ𝑐 (𝜎 ′) ∧ 𝜎 ≡𝐹 𝜎 ′ ⇒ 𝜎 ≡𝐹 ′ 𝜎 ′

We say the integrity constraint holds on state 𝜎 , denoted

𝜎 |= Φ𝑐 , if Φ𝑐 returns true on input 𝜎 .

In other words, the integrity constraint can be used to

check whether the values of auxiliary fields 𝐹 ′ are correct
based on the values of other fields. For instance, the check
function from Figure 2 conforms to our definition: given any

value for field actStream, there is only one possible value

for the fields als and ars for which check returns true.

Definition 3.10. (Integrity constraint satisfaction) We

say that a data structure 𝐷 satisfies integrity constraint Φ𝑐 ,

denoted 𝐷 |= Φ𝑐 , iff, for every reachable state 𝜎 of 𝐷 , we

have 𝜎 |= Φ𝑐 .

Problem statement. Given a data structure definition

𝐷 = (𝐹,𝑀) and an integrity constraint Φ𝑐 , our goal is to

synthesize a new data structure 𝐷 ′ = (𝐹,𝑀 ′) such that (1)

𝐷 ′ ⪯ 𝐷 and (2) 𝐷 ′ |= Φ𝑐 .

4 Data Structure Refinement Algorithm

In this sectionwe present our algorithm for synthesizing data

structure refinements from integrity constraints. We start by

introducing some terminology and then give an overview of

our modular refinement procedure. Afterwards, we describe

the novel aspects of our inductive synthesis approach in

more detail, including necessary precondition computation

for pruning partial programs as well as deduction-guided

grammar augmentation.

4.1 Preliminaries

Figure 3 shows the context-free grammar (CFG) used by our

synthesis algorithm for generating method bodies. It con-

tains loops, conditionals, assignments, stores, loads, method

calls, etc. Some of the non-terminals N in this CFG (e.g.,

𝐿𝜏 , 𝐸𝜏) are parametrized by types to prevent enumeration of

ill-typed programs during synthesis.

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

Stmt 𝑆 → 𝐴 | 𝑆1; 𝑆2 | if(𝐵) 𝑆1 else 𝑆2 | while(𝐵) 𝑆
Atom 𝐴 → 𝐿𝜏 ← 𝐸𝜏 | 𝐸𝜏 .𝑚(𝐿𝜏1

1
, ··, 𝐸𝜏𝑛𝑛) | new𝑚(𝐿𝜏11 , ··, 𝐸𝜏𝑛𝑛)

LHS 𝐿𝜏 → 𝐿𝜏
′
.𝑓 | 𝐿𝜏 [] [𝐼] | 𝑣𝜏

Index 𝐼 → 𝐸int | 𝑣int

Expr 𝐸𝜏 → ⊗𝜏 (𝐸𝜏1
1
, ··, 𝐸𝜏𝑛𝑛) | 𝑣𝜏 | 𝑐𝜏 | 𝐸𝜏𝑖 .𝑓 | 𝐸𝜏 [] [𝐼]

Pred 𝐵 → 𝐸bool | ⊕ (𝐵1, ··, 𝐵𝑛)

Figure 3. CFG used by the synthesis algorithm. Here, ⊗𝜏
denotes an n-ary operator that produces a result of type 𝜏 ,

and ⊕ is a boolean connective.

Given grammar G with non-terminals N , terminals T ,
and productions R, we say that a string P ∈ (T ∪ N)∗ is a
partial program iff 𝑆 ⇒∗ P (i.e., P can be derived from the

start symbol) and we refer to non-terminals in P as holes.
A string P is said to be a complete program if P does not

contain any non-terminals (i.e., P ∈ T ∗). In this paper, we

use the term sketch to refer to a partial program that does

not contain non-terminals 𝐿𝜏 and 𝑆 . In other words, a sketch

is a left-hand-side complete partial program (modulo array

indices). Finally, we say that P ′ is an expansion of P if P ′
can be obtained from P by substituting some non-terminal

𝑁 in P with 𝛼 for some production 𝑁 → 𝛼 in the grammar.

Example 4.1. We provide a few examples to illustrate our

terminology:

• if (𝐵) 𝐿𝜏 ← 𝐸𝜏 else 𝑆 (Partial Program)

• if (𝐵) 𝑥int ← 𝐸int else 𝑥int ← 𝐸int (Sketch)

• if (𝑎int > 1) 𝑥int ← 𝑦int else 𝑥int ← 𝑧int (Complete)

As mentioned earlier, our synthesis algorithm associates

a probability with each production 𝑟 in the grammar. Specifi-

cally, for a given production 𝑟 = (𝑁 → 𝛼) ∈ G, P(𝑟) ∈ [0, 1]
corresponds to the probability of expanding non-terminal 𝑁

using production 𝑟 . A context-free grammar G augmented

with such a probability distribution P over the productions
of G is called a probabilistic context free grammar (PCFG).
Also, given a partial program 𝑃 , we define Pr(P) to be the

probability of obtaining P using productions in the PCFG.

More formally,

PrG (P) =
∑

Δ∈Derivs(P,G)

∏
𝑟 ∈Δ
P(𝑟)

where Derivs(P) denotes all derivations for partial program
P and a derivation is a sequence of productions 𝑟1, . . . , 𝑟𝑛 .

4.2 Modular Refinement Algorithm

We now describe our modular data structure refinement

procedure (summarized in Algorithms 1 and 2). The Refine

procedure (Alg. 1) takes as input the original data structure

𝐷 = (𝐹,𝑀), a new set of fields 𝐹 ′, and an integrity constraint

Φ𝑐 (𝐹, 𝐹 ′) (encoded as a boolean method), and it returns a

1: procedure Refine(𝐷 , 𝐹 ′, Φ𝑐)

input: Data structure 𝐷 = (𝐹,𝑀); new fields 𝐹 ′

input: Integrity constraint Φ𝑐
output: 𝐷 ′ such that 𝐷 ′ ⪯ 𝐷 and 𝐷 ′ |= Φ𝑐

2: 𝑀 ′ ← ∅
3: for all𝑚 ∈ Domain(𝑀) do
4: P ← InsertHoles(𝑀 [𝑚])
5: 𝑆 ← UpdateMethod(𝑀 [𝑚],P,Φ𝑐)
6: if 𝑆 = ⊥ then return ⊥
7: 𝑀 ′ ← 𝑀 ′ ∪ {(𝑚, 𝑆)}
8: return (𝐹 ∪ 𝐹 ′, 𝑀 ′)

Algorithm 1. Top-level refinement procedure

1: procedure UpdateMethod(𝑆 , P, Φ𝑐)
input: Original body 𝑆 for some method𝑚 in 𝐷

input: Partial program P for new body of𝑚 in 𝐷 ′

input: Integrity constraint Φ𝑐
output: New method body𝑚𝐷′ = 𝑆 ′ such that (1)𝑚𝐷′ ⪯ 𝑚𝐷 ,

and (2) {Φ𝑐 }𝑆 ′{Φ𝑐 } is a valid Hoare triple.

2: C ← ∅; ⊲ Counterexamples

3: G ← InitPCFG(Φ𝑐 , 𝑓);
4: while true do
5: (𝑆 ′,G′) ← Synthesize(P, C,G, 𝑆,Φ𝑐);
6: if 𝑆 ′ = ⊥ then return ⊥; ⊲ No feasible solution

7: 𝑆 ′′ ← Instrument(𝑆, 𝑆 ′,Φ𝑐);
8: C′ = Verify(𝑆 ′′);
9: if C′ = ∅ then return 𝑆 ′; ⊲ Verification successful

10: C ← C ∪ C′; G ← G′;

Algorithm 2. CEGIS loop for updating a method

refined data structure 𝐷 ′ = (𝐹 ∪ 𝐹 ′, 𝑀 ′) such that 𝐷 ′ ⪯ 𝐷

and 𝐷 ′ |= Φ𝑐 .

At a high level, the Refine procedure constructs 𝐷 ′ in
a modular way by updating each method𝑚 ∈ 𝑀 indepen-

dently. Specifically, for each method 𝑚, Refine invokes a

procedure called InsertHoles (line 3) which uses lightweight

static analysis to identify code fragments that modify 𝐹 and

inserts statement holes (i.e., nonterminals 𝑆) at all relevant

program points. Hence, the output of InsertHoles is a par-
tial program P which is then refined into a complete pro-

gram using the UpdateMethod procedure at line 5. If Up-

dateMethod is successful (i.e., returns 𝑆 ≠ ⊥), then the new

implementation𝑚𝐷′ = 𝑆 of𝑚 in 𝐷 ′ is guaranteed to satisfy

the refinement relation𝑚𝐷′ ⪯ 𝑚𝐷 as well as the integrity

constraint (i.e., {Φ𝑐 }𝑚𝐷′{Φ𝑐 } is a valid Hoare triple).

The UpdateMethod procedure (Alg. 2) synthesizes𝑚𝐷′

using a CEGIS loop but first initializes a PCFGG by assigning

probabilities to each production in the grammar (line 3). We

describe how to initialize the PCFG in more detail in Section

4.4. Then, in each iteration of the CEGIS loop, our algorithm

invokes the Synthesize method (line 5) to generate a candi-

date implementation 𝑆 ′ that satisfies all counterexamples C

Synthesizing Data Structure Refinements from Integrity Constraints PLDI ’21, June 20–25, 2021, Virtual, Canada

encountered so far. A key novelty of our inductive synthesis

procedure is that, in addition to producing a candidate im-

plementation, it also produces a new grammar G′ that can
be leveraged in subsequent iterations of the CEGIS loop.

Next, given a candidate implementation 𝑆 ′ for P, Up-
dateMethod checks whether 𝑆 ′ satisfies the conditions (1)
𝑆 ′ ⪯ 𝑆 and (2) {Φ𝑐 }𝑆 ′{Φ𝑐 }. To do so, it invokes the Instru-

ment procedure to construct the code snippet shown in

Figure 4 which is then verified using an off-the-shelf asser-

tion checker. Observe that the instrumented code in Figure 4

works as follows: First creates an instance 𝑑 of the original

data structure 𝐷 by calling GetInstance (Figure 5), which

simply invokes the constructor of 𝐷 followed by an invo-

cation of an arbitrary sequence of 𝐷’s methods. Then, it

initializes 𝑑 ′ to be an arbitrary object of type 𝐷 ′ and stipu-

lates that (1) 𝑑 and 𝑑 ′ obey the refinement relation and (2) 𝑑 ′

satisfies the integrity constraint. Next, it invokes themethods

𝑚,𝑚′ for 𝑑, 𝑑 ′ with the same arguments, and finally asserts

that 𝑑, 𝑑 ′ continue to satisfy the refinement relation and that

𝑑 ′ obeys the integrity constraint. If the assertions in this

instrumented program can be verified using an off-the-shelf

assertion checker (line 8 of Algorithm 2), UpdateMethod

returns 𝑆 ′ as a valid refinement of 𝑆 (line 9). Otherwise, it

adds the counterexamples returned by the verifier to C and

continues the CEGIS loop with updated grammar G′ and
additional counterexamples C′.

Remark. Note that the GetInstance call in the instru-

mented code in Figure 4 ensures that 𝑑 is a reachable state
of data structure 𝐷 . Furthermore, based on Def. 3.9 of in-

tegrity constraint, this 𝑑 uniquely determines 𝑑 ′ (modulo

memory addresses). Thus, any counterexample corresponds

to a reachable state of 𝐷 ′ and ensures that we do not reject

valid solutions despite using a modular strategy. Lastly, note

that after calling GetInstance we can safely assume the

integrity constraint holds on 𝑑 ′. This is because if Φ𝑐 does

not hold prior to 𝑚′, then one of the methods invoked in

GetInstance must violate Φ𝑐 . However, we verify (induc-

tively) that none of the methods are the first to break the

integrity constraint and so it is safe to assume Φ𝑐 holds. This

is known in the verification literature as circular composi-

tional reasoning [32, 35].

We state and prove the following theorems under the as-

sumption that the verification oracle is sound and complete.

Lemma 4.2. Suppose that UpdateMethod rejects a candi-
date body 𝑆 ′ for method𝑚. Then, there does not exist a solution
𝐷 ′ to the synthesis problem where𝑀 ′[𝑚] = 𝑆 ′.

This lemma is important for the completeness of the end-

to-end approach (Theorem 4.4) because it states that Up-

dateMethod does not reject valid solutions.

Theorem 4.3. (Soundness) Suppose that Refine(𝐷, 𝐹 ′,Φ𝑐)
returns 𝐷 ′. If 𝐷 ′ ≠ ⊥ then 𝐷 ′ ⪯ 𝐷 and 𝐷 ′ |= Φ𝑐 .

𝑑 = GetInstance(𝐷); 𝑑 ′ = ★

assume(𝑑 ≡𝐹 𝑑 ′); assume(Φ𝑐 (𝑑 ′));
args = ★;m(𝑑, args);m′(𝑑 ′, args);
assert(𝑑 ≡𝐹 𝑑 ′); assert(Φ𝑐 (𝑑 ′));

Figure 4. Code generated by the Instrument procedure. ★

denotes a random value.

function GetInstance(𝐷)

𝑑 = new 𝐷 ()
while ★ do𝑚 = randMethod(𝐷); 𝑚(𝑑,★)
return 𝑑

Figure 5. Returns reachable instance of data structure D

1: procedure Synthesize(P, C, G, 𝑆 , Φ𝑐)
input: Partial program P; counterexamples C
input: Original method body 𝑆 for a method𝑚; PCFG G
input: Integrity constraint Φ𝑐
output: Candidate implementation 𝑆 ′ and new PCFG G′

2: 𝑊 = {P}
3: while𝑊 ≠ ∅ do
4: P ′ ← SelectBest(𝑊,G)
5: C𝑆𝐴𝑇 ← Deduce(P ′, 𝑆, C,Φ𝑐)
6: if IsComplete(P ′) ∧ |C𝑆𝐴𝑇 | = |C| then return (P ′,G)
7: if |𝐶𝑆𝐴𝑇 | > 0 ∧ IsSketch(P ′) then
8: for all ℎ ∈ Holes(P) do
9: P𝑖 ← Impl(P ′, ℎ)
10: G ← AugmentGrammar(G,P𝑖 , C𝑆𝐴𝑇)
11: if |C𝑆𝐴𝑇 | = |C| then𝑊 ←𝑊 ∪ Expand(P ′)
12: return (⊥,G)

Algorithm 3. Inductive synthesis algorithm

Theorem4.4. (Completeness) LetRefine(𝐷, 𝐹 ′,Φ𝑐) return
𝐷 ′. If 𝐷 ′ = ⊥ then there does not exist a 𝐷 ′ = (𝐹 ′, 𝑀 ′) such
that 𝐷 ⪯ 𝐷 ′ and 𝐷 ′ |= Φ𝑐 .

4.3 Inductive Synthesis Algorithm

In this section, we describe our inductive synthesis procedure

summarized in Algorithm 3. This algorithm uses top-down

enumerative search with deduction-based pruning and gram-

mar augmentation. In particular, it maintains a worklist𝑊 of

partial programs (initialized to {P} at line 2) and iteratively

explores partial programs until it finds a complete program

that satisfies all the counterexamples (line 6). In each itera-

tion of the loop, it invokes the SelectBest function (line 4)

to identify the most promising partial program in the work-

list according to the PCFG. Here, the best program is defined

as follows:

𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡 (𝑊,G) =
(
argmax

P∈𝑊
PrG (P)

)
Next, given a partial program P ′, Synthesize invokes the

Deduce function (line 5) to check whether P ′ is infeasible.

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

1: procedure Deduce(P, 𝑆 , C, Φ𝑐)
input: Partial program P
input: Original method body 𝑆 for method𝑚

input: Counterexamples C; Integrity Constraint Φ𝑐
output: Set of satisfied counterexamples C𝑆𝐴𝑇

2: C𝑆𝐴𝑇 ← ∅
3: 𝑆 ′ ← Approximate(Inline(P),∅)
4: Φ←WP(𝑆 ′,Φ𝑐)
5: for all 𝐶 ∈ C do

6: if 𝑆𝐴𝑇 (Φ[𝐶]) then C𝑆𝐴𝑇 ← C𝑆𝐴𝑇 ∪ {𝐶}
7: return C𝑆𝐴𝑇

Algorithm 4. Checking feasibility of partial programs

In particular, Deduce returns a set C𝑆𝐴𝑇 ⊆ C such that P ′ is
consistent with the specification for every input 𝐶 ∈ C𝑆𝐴𝑇 .
Thus, if C𝑆𝐴𝑇 ≠ C, this means that all completions of P ′
violate the specification for at least one input 𝐶 ∈ C; hence,
P ′ can be pruned from the search space without sacrificing

completeness. Therefore, we only expand a partial program

if C𝑆𝐴𝑇 = C (see line 12). On the other hand, if C𝑆𝐴𝑇 = C
and P ′ is a complete program, then P ′ is a solution to our

inductive synthesis problem and is returned at line 6.

Lines 8-10 of the Synthesize algorithm perform deduction-
guided grammar augmentation. In particular, if P ′ is a sketch
that is consistent with a non-empty subset of the counterex-

amples, it iterates over all the synthesized fragments in P ′,
and for each synthesized fragment P𝑖 , it invokes the Aug-
mentGrammar procedure to add a new production 𝐴→ P𝑖
to the grammar. This is based on the observation that pro-

gram sketches that satisfy some of the counterexamples of-

ten tend to occur as sub-components of the final solution.

Thus, to avoid re-synthesizing these (potentially large) pro-

gram sketches from scratch in future iterations, we directly

add them as productions to the grammar. In essence, such

deduction-guided grammar augmentation allows combining

the benefits of top-down and bottom-up search in a goal

directed way.

In what follows, we explain the Deduce and Augment-

Grammar procedures in more detail.

Pruning via necessary preconditions. Our technique

for checking feasibility of partial programs is presented in

Algorithm 4. Given a partial program P, the Deduce pro-

cedure returns a subset C𝑆𝐴𝑇 of C that P is consistent with.

The high level idea is to compute a necessary precondition Φ
for correctness that any instantiation of P must satisfy and

test whether Φ is satisfied by the counterexamples. If any

𝐶 ∈ C violates this necessary precondition, P is guaranteed

to be infeasible.

In more detail, the Deduce procedure first inlines the

method calls in the P 1
and calls Approximate to generate

1
We inline method calls here to simplify presentation; our implementation

does not perform inlining

a completion 𝑆 ′ of P. Here, 𝑆 ′ contains symbolic variables

that represent “environment choices”, and it is constructed

in such a way that, if there exists a completion of P that

satisfies the specification, then it is possible to find values of

symbolic variables in 𝑆 ′ so that 𝑆 ′ satisfies the specification.
Figure 6 presents the Approximate procedure as inference

rules deriving judgments of the form ⊢ 𝛼 { 𝛽 where 𝛼 is a

sequence of symbols in the grammar and 𝛽 is its correspond-

ing replacement (i.e., over-approximation). If 𝛼 represents an

expression or predicate, we obtain its replacement by recur-

sively replacing any non-terminals nested inside it with fresh

(unconstrained) variables. For assignments, we replace the

assignment 𝛼 ← 𝛽 with 𝛼 ′ ← 𝛽 ′ where 𝛼 ′, 𝛽 ′ are replace-
ments for 𝛼, 𝛽 respectively and where 𝛼 does not contain the

non-terminal 𝐿 (Assign-1). On the other hand, if 𝛼 contains

a non-terminal 𝐿, we do not know which memory location

is being written to; thus, we model it as a non-deterministic

assignment to any of the new variables (Assign-2). Similarly,

we model an unknown statement 𝑆 as a write to all possible
memory locations that may be modified by 𝑆 (Statement).

Example 4.5. Approximate produces the following com-

plete program for Listing 2 in Section 2.

public void acceptStream(int sId , ...) {

StreamState newS = new StreamState (...);

StreamState oldS = actStreams.put(sid , newS);

AtomicInteger v1, v2; // fresh

this.als = v1; this.ars = v2; // added

this.als = new AtomicInteger ();

}

Given the output 𝑆 ′ of Approximate, the Deduce proce-
dure computes the weakest pre-condition of 𝑆 ′ with respect

to the integrity constraint Φ𝑐 .
2
As stated by the following

theorem, the weakest precondition Φ of 𝑆 ′ is a necessary
precondition for 𝑆 (and therefore P):
Theorem 4.6. Let 𝑆 ′ be an over-approximation of code 𝑆 .
Then, if 𝜙 is a necessary condition for 𝑆 ′ to be correct, then 𝜙
is also a necessary precondition for 𝑆 .

Thus, based on this theorem, if there is a counterexample

that is inconsistent with the computed necessary condition

Φ, this means that we can prune partial program P from the

search space.

Grammar augmentation. The final piece of our induc-

tive synthesis technique is the AugmentGrammar proce-

dure presented in Algorithm 5 for adding new productions

to the PCFG. This algorithm takes as input the current PCFG

G, a sketch P, the current set of counterexamples C, and it

returns an augmented grammar that contains new produc-

tions. In particular, the augmented grammar contains a new

2
Since Φ𝑐 is a boolean function, 𝑊𝑃 (𝑆′,Φ𝑐) can be computed as

𝑊𝑃 (𝑆′;Φ𝑐 , true) . The verifier in our implementation is a bounded model

checker, so we unroll and compute weakest preconditions in a standard

way.

Synthesizing Data Structure Refinements from Integrity Constraints PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑁 ∈ {𝐸𝜏 , 𝐼 , 𝐵} 𝑣 fresh
⊢ 𝑁 { 𝑣

Expr Non-Term

𝛼 ∈ T ∗
⊢ 𝛼 { 𝛼

Terminal

⊢ 𝛼𝑖 { 𝛽𝑖 for 1 ≤ 𝑖 ≤ 𝑛

⊢ 𝑜𝑝 (𝛼1, . . . , 𝛼𝑛) { 𝑜𝑝 (𝛽1, . . . , 𝛽𝑛)

Expr Operation

{𝑓1, . . . , 𝑓𝑛} = NewVars
𝑣𝑖 fresh(𝑖 ∈ [1, 𝑛])

⊢ 𝑆 { 𝑓1 ← 𝑣1; . . . ; 𝑓𝑛 ← 𝑣𝑛

Statement

𝐿 ∉ 𝛼 ⊢ 𝛼 { 𝛼 ′ ⊢ 𝛽 { 𝛽 ′

⊢ (𝛼 ← 𝛽) { (𝛼 ′ ← 𝛽 ′)

Assign-1

𝐿 ∈ 𝛼 𝛽 { 𝛽 ′ {𝑓1, . . . , 𝑓𝑛} = NewVars

⊢ (𝛼 ← 𝛽) { choose((𝑓1 ← 𝛽 ′), . . . , (𝑓𝑛 ← 𝛽 ′))

Assign-2

⊢ 𝛼1 { 𝛽1 ⊢ 𝛼2 { 𝛽2 ⊢ 𝛼3 → 𝛽3

⊢ if(𝛼1) 𝛼2 else 𝛼3 { if(𝛽1) 𝛽2 else 𝛽3

If-Else

⊢ 𝛼1 { 𝛽1 ⊢ 𝛼2 { 𝛽2

⊢ while(𝛼1) 𝛼2 { while(𝛽1) 𝛽2
While

⊢ 𝛼1 { 𝛽1 ⊢ 𝛼2 { 𝛽2

⊢ 𝛼1;𝛼2 { 𝛽1; 𝛽2

Seqence

Figure 6. Approximate inference rules. choose represents a nondeterministic choice between any of its arguments

1: procedure AugmentGrammar(G, P, C)
input: PCFG G = (N ,T ,R, P); sketch P
input: Counterexamples C collected so far

output: An updated PCFG G′

2: T ′ ← T ; P′ ← P;
3: if S ∉ N then

4: N ′ ← N ∪ {S}
5: R ′ ← R ∪ {S → P} ∪ {𝐴→ S};
6: InitProbabilities(P,R ′

𝐴
)

7: else

8: N ′ ← N ; R ′ ← R ∪ {S → P};
9: 𝑍 ← ∑

(S→𝛼) ∈R NumSatisfied(𝛼, C)
10: for all 𝑟𝑖 ∈ {𝑟 | 𝑟 ≡ (S → 𝛼) ∈ R ′} do
11: 𝑛𝑖 ← NumSatisfied(𝛼, C)
12: P′(𝑟𝑖) ← 𝑛𝑖/𝑍
13: return (N ′,T ′,R ′, P′)

Algorithm 5. Grammar augmentation procedure.

NumSatisfied(𝛼, C) returns the average number of

counterexamples in C satisfied by previously explored

sketches containing 𝛼 .

non-terminal S that represents sketches. It also contains two

new productions:

• The production 𝐴 → S allows using sketches as atomic

building blocks when constructing partial programs. (Re-

call that non-terminal 𝐴 represents atomic statements.)

• The production S → P adds sketch P as a new building

block in the grammar.

In more detail, if the input grammar G does not contain

the non-terminal symbol S, we add S to the set of non-

terminals and add 𝐴→ S to the set of productions. We also

call InitProbabilities (discussed in Section 4.4.2) to update the
probabilities of all productions starting with non-terminal

𝐴. If the grammar already contains productions of the form

S → 𝛼 , the probabilities associated with all of these produc-

tions also need to be updated. Thus, the loop in lines 10-12

adjusts the probabilities for each production 𝑟𝑖 = (S → 𝛼𝑖)
to 𝑛𝑖/𝑍 where 𝑛𝑖 is the average number of counterexamples

satisfied by sketches containing 𝛼𝑖 and 𝑍 is a normalization

term. Here, the intuition is to assign higher probabilities

to productions associated with sketches that satisfy more

counterexamples.

4.4 PCFG Initialization

As stated earlier, an important observation underlying our

solution is that the integrity checker and the surrounding

code base contain useful clues that can be used to guide

search. Thus, our technique (1) performs static analysis to

identify features that are likely to be used in the desired

solution, and (2) initializes PCFG probabilities to prioritize

programs that use these features.

4.4.1 Mining Features via Static Analysis. Our static

analysis extracts three types of code elements (namely, func-

tions, types, and operators) for assigning probabilities to

productions. These code elements are extracted by analyzing

the integrity checking function and the surrounding code

base.

Analysis of integrity checking function. Our method

statically analyzes the integrity checker Φ𝑐 to identify (1)

types of expressions used in Φ𝑐 , (2) all operators (e.g., bit-

shift, addition, etc.) that syntactically appear in Φ𝑐 , and (3)

functions that are invoked by Φ𝑐 . Such code elements that

syntactically appear in the integrity checker often also tend

to appear in the synthesized code; thus, our technique as-

signs a higher probability to productions involving these

code elements. (The mechanism for increasing probabilities

is discussed in Section 4.4.2.)

Analysis of existing functions. Recall from Section 2

that existing functions in the code base may be useful for

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

updating the new fields. Thus, our method statically analyzes

all existing functions to identify a subset of methods that

return or update values of type 𝜏 , where 𝜏 is also the type

of one of the new fields. In particular, our technique uses an

off-the shelf pointer analysis to identify all memory locations

of type 𝜏 that are updated by some function 𝑓 . If 𝜏 is also

the type of a new field, then function 𝑓 is considered to be a

promising candidate and the probability of the corresponding

production is increased.

4.4.2 Initializing Probabilities. Given a set of “interest-

ing” productionsR ′ identified using static analysis, ourmethod

initializes PCFG probabilities as follows. First, let R𝑁 denote

the set of productions whose left-hand-side is non-terminal

𝑁 , and let R ′
𝑁
be R𝑁 ∩ R ′. To initialize probabilities for pro-

ductions in R𝑁 , we first define a normalization constant 𝑍

as follows:

𝑍 = |R𝑁 \R ′𝑁 | + 𝑐𝑁 |R ′𝑁 |
where 𝑐𝑁 is a constant strictly greater than 1. Then, we assign

probabilities to productions 𝑟 ∈ R𝑁 as follows:

P(𝑟) =
{
1/𝑍 if 𝑟 ∈ (R𝑁 \R ′𝑁)
𝑐𝑁 /𝑍 if 𝑟 ∈ R ′

𝑁

Theorem 4.7. For each non-terminal 𝑁 in the grammar,
P(𝑁) defines a valid probability distribution over R𝑁 .

5 Implementation

We have implemented our proposed approach in a tool called

Volt. The inputs to Volt include (1) the source code of a Java

data structure 𝐷 , (2) an integrity constraint implemented as

a Java function, and (3) a set of new fields to be added to

𝐷 . In addition, Volt also takes a time limit 𝑡 (in seconds)

indicating the maximum time it has to synthesize the desired

function. Volt itself is implemented in Java and leverages

the Z3 SMT solver [10] to check the feasibility of partial

programs in the Deduce procedure and the JBMC assertion

checker [9] for verification in the Verify procedure. In what

follows, we discuss some key optimizations for the synthesis

algorithm from Section 4.

Grammar productions. The grammar presented in Fig-

ure 3 is simple but unnecessarily permissive. In our imple-

mentation, we use a more fine-grained grammar that disal-

lows enumerating obviously useless programs. In particular,

our implementation restricts left-hand-side grammar expres-

sions to new fields and fresh (temporary) variables. Second,

it restricts method invocations to those that do not have side

effects on existing fields. Third, it disallows atomic state-

ments that call pure functions (since they are essentially

no-ops). Fourth, it restricts loops to range-based for loops

as arbitrary while loops are fairly uncommon compared to

range-based counterparts. Finally, it restricts the set of local

variables used in right-hand-side expressions to those that

are in scope at the relevant program point. Observe that some

of these restrictions require source code analysis; therefore

our implementation leverages the Soot program analysis

infrastructure [26] and the SPARK pointer analysis [31] to

perform these optimizations.

Additional pruning strategies. Beyond using a gram-

mar with auxiliary nonterminals, our implementation per-

forms a few other optimizations to reduce search space. First,

since multiple updates of a program variable along the same

execution path are redundant, Volt disallows enumerating

such partial programs. Second, it disallows loops that do not

use the iterator in the body. Finally, since writing to tem-

porary variables is only useful if there is a read afterwards,

our implementation also avoids enumerating programs that

write to, but do not read from, temporary variables.

6 Evaluation

In this section we describe a series of experiments that are

designed to answer the following research questions:

1. (RQ1) Can Volt be used to refine data structures in real-

world Java applications?

2. (RQ2) How does Volt compare against other approaches

that could be used for solving the same problem?

3. (RQ3) How important is each of the three design deci-

sions in Volt (i.e., use of PCFGs, necessary precondition

computation, and grammar augmentation)?

Benchmarks. To evaluate Volt on real-world applica-

tions, we used a Github crawler to identify popular Java

projects that use correlated fields for performance reasons.

The crawler looks for commits with messages that match

certain relevant keywords such as “performance”, “cache”,

“new fields”, etc. We then manually inspected projects re-

turned by the crawler and retained the first 25 classes that

indeed have multiple correlated fields. To evaluate Volt on

these benchmarks, we manually removed all the declara-

tions and statements involving correlated fields (except for

one field), wrote an integrity checking function, and used

Volt to automatically derive the original implementation.

To determine which fields to remove we used three criteria.

First, if fields 𝑓1, . . . , 𝑓𝑛 could be derived from 𝑓 , we removed

each 𝑓𝑖 . Second, if the fields could be derived from each other

we marked those added in later commits as the auxiliary

fields and removed them. Finally if the fields were added in

the same commit we used syntactic hints e.g. name of the

field to break the tie. For example in our benchmark Persis-

tentSeqentialDictionary, one of the correlated fields

was called “cache" and the other was called “reverseCache"

and we marked the latter as auxiliary.

Setup. In our evaluation, we use a time limit of 1 hour

and run all of our experiments on the Google Cloud Engine

(GCE) on an 8 vcpu instance with 128GB of memory.

Synthesizing Data Structure Refinements from Integrity Constraints PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 1. Main experimental results. ⊥ indicates the tool timed out (> 1 hour) when solving the benchmark.

Project Class LoC # Productions # Corr. Fields Total Funcs. # Updated Funcs. Volt

strapdata/elessandra FieldData 102 1822 2 7 3 32.11

watabou/pixeldungeon Level 1023 1044 3 35 3 28.24

netty/netty DefaultChannelPipeline 1049 2150 2 127 6 93.33

netty/netty SpdySession 361 1230 3 42 5 102.44

apache/wicket RequestAdapter 171 1832 2 10 2 82.2

bisq-network/bisq MathUtils 182 1150 2 12 2 125.4

apache/wicket AsynchronousPageStore 397 2734 3 17 3 222.63

wakaleo/game-of-life EndlessGrid 156 944 2 14 3 444.3

jenkinsci/gitlab-plugin GitlabWebhook 350 1322 2 23 2 355.3

pravega/pravega StreamSegmentContainerMetadata 314 1732 3 27 3 377.2

spring-cloud/spring-cloud-gcp PartTreeDataStoreQuery 432 1655 2 30 3 822.2

apache/falcon OozieWorkflowEngine 85 755 2 104 2 83.2

apache/falcon ConfigurationStore 452 1134 2 30 4 192.2

javaparser/javaparser LexicalPrinter 554 2215 3 122 3 ⊥
jdbi/jdbi ImmutablePropertiesFactory 1023 3255 2 82 3 663.2

jdbi/jdbi RowView 197 1683 2 19 3 613.2

strapdata/elessandra InternalIndexingStats 185 1332 3 11 3 344.8

jacoco/jacoco MethodAnalyzer 350 1422 2 31 1 35.4

jetbrains/Xodus PersistentSequentialDictionary 228 1772 3 17 2 143.2

OpenGamma/Strata FxMatrix 557 1933 3 31 4 79.2

osmandapp/Osmand GeocodingLookupService 287 1611 3 14 2 ⊥
graylog2/graylog2-server StreamCacheService 96 1033 3 17 2 99.3

spring-projects/spring-framework DefaultListableBeanFactory 2153 4822 2 116 5 144.4

facebook/buck DaemonicParserState 755 1933 4 33 6 455.4

junit-team/junit4 BlockJunit4ClassRunner 377 3255 2 33 2 415.3

Average - 495.3 1830.3 2.56 40.1 2.96 264.2

Table 2. Baseline results. The Avg. Time is the average time

over all the solved benchmarks (ignoring verification time)

so timeouts do not contribute to the average time.

Tool # Solved Avg. Time

Volt 23 264.2

FrAngel 5 160.21

JSketch 2 1033.3

6.1 Main results

To answer our first research question, we evaluated whether

Volt is able to automatically refine the benchmarks and

how long it takes to do so. The results of this evaluation are

summarized in Table 1. Here, the first two columns show

the name of the class to be refined and the project it is taken

from. The third column indicates the lines of code in the

class and the fourth column shows the average number of

initial productions in our PCFG. The next three columns

provide information about the number of new fields to be

added, the total number of functions defined in the class, and

the number of functions that need to be updated. Finally, the

last column shows the running time of Volt.

Overall, Volt is able to automatically refine 23 out of the

25 benchmarks (92%) within the provided time limit, and its

average synthesis time is 264.2 seconds. Furthermore, we

manually inspected the synthesized code and compared it

against the human-written version. In all cases, we confirmed

that the synthesized code is correct and matches the human-

written code except for minor variations (e.g., if(b) S1 else

S2 vs. if(!b) S2 else S1).

Analysis of failed benchmarks. As shown in Table 1,

there are two benchmarks that Volt failed to solve within the

1 hour time limit. In particular, Volt is unable to synthesize

the desired update for classes GeocodingLookupService and

DemonicParserState because the required update logic is

very complex for some functions. For instance, a function in

DemonicParserState requires adding 15 lines of code with

over 150 AST nodes.

6.2 Comparison against baselines

To put these results in context and answer our second re-

search question, we also evaluated Volt against existing

tools. While there is no existing technique that addresses ex-

actly our problem, we adapted two program synthesis tools

to our problem setting:

• Frangel: FrAngel is a component-based synthesis tool

that can synthesize code with loops and conditionals [37].

However, since FrAngel only handles input-output ex-

amples, we cannot directly use it to solve our problem.

Thus, to adapt FrAngel to our setting, we used Volt’s

modular refinement algorithm (Algorithm 2) but replaced

its inductive synthesis engine with FrAngel instead.

• JSketch: Our third baseline is JSketch [23], which is an-

other state-of-the-art synthesizer for Java. Since JSketch

can also not be used to directly solve our problem, we also

perform this comparison by replacing Volt’s inductive

synthesis engine with JSketch.

Note that both of these baselines are not quite apples-to-

apples comparisons as they actually utilize Volt’s modu-

lar refinement procedure. Nonetheless, they serve as useful

baselines for evaluating our proposed inductive synthesis

algorithm (Algorithm 3).

As we can see from Table 2, JSketch can only solve 2 of

the 25 benchmarks and is more than an order of magnitude

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

0 5 10 15 20

0

2,000

4,000

6,000

Solved Benchmarks

C
u
m
u
l
a
t
i
v
e
S
y
n
t
h
e
s
i
s
T
i
m
e
(
s
)

Volt-NoDeduce

Volt-NoPCFG

Volt-NoAugment

Volt

Figure 7. Comparing Volt to baselines.

slower than Volt for these two benchmarks. FrAngel solves

5 of the benchmarks but fails to solve the remaining 20within

the 1 hour time limit. These results indicate that state-of-the-

art synthesis tools are not sufficient for solving our problem

even when leveraging the modular refinement idea proposed

in this paper.

6.3 Ablation Study

In this section, we present the results of an ablation study

for answering our third research question. In this evaluation,

we consider the following three ablations of Volt:

• Volt-NoPCFG: This is a variant of Volt that uses a CFG

(instead of a PCFG). In particular, Volt-NoPCFG uses the

integrity constraint to generate an initial CFG without

probabilities, and augments it with new productions with-

out probabilities during synthesis. In addition, it still com-

pute preconditions to prune infeasible programs.

• Volt-NoAugment: This is a variant of Volt that does not

perform grammar augmentation. That is, Volt-NoAugment

starts with the same initial PCFG and performs deduction

to prune infeasible programs; however, it does not use

deduction to augment the grammar. In other words, the

PCFG is not changed throughout.

• Volt-NoDeduce: This is a variant of Volt that does not

compute necessary preconditions. As a result, it cannot

perform pruning or grammar augmentation, and it only

uses the initial PCFG during the entire synthesis process.

The results of this ablation study are summarized in Fig-

ure 7. Here, the x-axis shows the number of solved bench-

marks (sorted in increasing order of synthesis time), and the

y-axis denotes cumulative running time. As we can see, all

variants perform significantly worse than Volt; however, the

computation of necessary preconditions has the most impact

among the three ablations. Overall, these results demonstrate

that all three ideas used in our inductive synthesis algorithm

are important for making this technique useful in practice.

7 Related Work

Data structure Repair and Verification. There is an

extensive body of research on runtime detection and repair

of data structures from arbitrary boolean constraints [12–15]

starting from Demsky and Rinard [13]. Our work is similar

to this line of research in that we expect users to provide

integrity constraints over the fields of the data structure.

However, our problem is fundamentally orthogonal as we

want to statically update the data structure so that the in-

tegrity constraint holdswhereas these approachesmutate the

state of the data structure at runtime to satisfy the integrity

constraints. There is a parallel line of research [16, 27, 28, 39]

on statically verifying properties of data structures. Our im-

plementation of Volt uses a bounded model checker instead

of these verifiers since it needs to obtain counterexamples

in the CEGIS loop.

Data Invariants. Our work is also related to prior re-

search on maintaining data invariants [30, 36]. The most

similar work to ours is Spyder [36]. Like Volt, Spdyer re-

quires the developer to specify an invariant over fields of the

data structure and afterwards it automatically synthesizes

a new data structure where the invariants are maintained

after each basic block. Unlike Volt, Spyder requires the in-

variants to be iterator-based and alias-free. In particular, the

correlated fields must be iterator based data structures that

are structurally similar (i.e. all are the same length) and the

contents of the data structures cannot alias each other. The

benefit of such restrictions is that it allows Spdyer to perform

powerful and efficient transformations such as updating an

existing loop header to simultaneously iterate over multiple

structures. Volt, on the other hand, allows developers to

specify arbitrary invariants so long as they can be encoded as

a boolean function. As such, it can handle a much larger class

of invariants that Spyder cannot. For example, Spdyer cannot

synthesize the desired update in Figure 1 as the correlated

fields are not iterator-based. In addition, the technical details

of synthesis algorithms are completely different. Spdyer’s

technique is based on deductive synthesis whereas Volt

performs inductive synthesis.

Data representation synthesis. Our work is related to

a line of research on so-called data representation synthesis
[11, 21, 22, 33, 41], where the goal is to synthesize a complete

data structure from a specification. For example, Hawkins

et al. [21] allow developers to specify data structures as a

series of query and update relations, and their synthesis pro-

cedure uses rewrite rules along with deduction to generate

the concrete implementation. Loncaric et al. [33] follow a

similar procedure; however, they use enumerative search to

generate the implementation for update relations. Unlike this

line of research, our work focuses on cases where developers

refine an existing implementation by adding correlated fields.

Thus, developers only need to provide a simple integrity

Synthesizing Data Structure Refinements from Integrity Constraints PLDI ’21, June 20–25, 2021, Virtual, Canada

checking function as opposed to a complete implementation

in a specification language. Furthermore, our approach can

perform an in-place update as opposed to synthesizing the

complete data structure from scratch.

Synthesis using probabilistic models. There are sev-

eral prior techniques that use probabilistic models to guide
their search [6–8, 25, 29, 38]. Most of these techniques learn

a static PCFG through offline training [6, 29] whereas our

approach uses static analysis to initialize probabilities and

updates them on the fly. Barke et al. [7] also update PCFG

probabilities by identifying programs that satisfy some of

the input-output examples. However, in contrast to Barke

et al. [7], our approach uses deduction to identify promising

program sketches and augments the grammar with those

productions in addition to updating probabilities. In addi-

tion, Concord [8] also combines probabilistic models with

deduction; however, it uses deduction to compute a reward

for reinforcement-learning guided synthesis, whereas our

approach uses deduction to augment the PCFG.

Component-based synthesis. There has been a long line

of research on synthesizing programs from a set of compo-

nents such as library functions [17–20, 24, 34, 37, 40]. Among

these component-based synthesis approaches, the most re-

lated one is FrAngel [37], which can also synthesize control

flow constructs like conditionals and loops. FrAngel is par-

ticularly related to our approach in that it learns new compo-

nents at synthesis time by composing existing components.

This is similar to our approach in that we also augment the

grammar with new productions. However, a key difference

from FrAngel is that Volt uses program analysis and de-

ductive reasoning to learn these productions; furthermore,

the new “components” Volt learns are program sketches

rather than complete programs. As we show experimentally

in Section 6, our proposed inductive synthesis approach sig-

nificantly outperforms FrAngel in this context.

Acknowledgments

We thank the anonymous reviewers for the helpful feed-

back. This material is based upon work supported by the

National Science Foundation under Grant Nos. CNS-1908304,

CCF-1811865, and CNS-1514435. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the

views of the funding sources.

8 Conclusion

We have presented Volt, a tool for refining data structure

implementations from integrity constraints. Volt is based

on program synthesis and uses a modular instantiation of

the CEGIS paradigm powered by a novel inductive synthe-

sizer that incorporates three key ideas: (1) pruning using

necessary preconditions, (2) deduction-guided grammar aug-

mentation, and (3) PCFG construction using static analysis.

We have evaluated Volt on 25 real-world Java classes with

correlated fields and show that Volt can successfully refine

23 out of these 25 (92%) benchmarks. We also compared Volt

against other state-of-the-art synthesis tools for Java and

showed that our closest competitor can only solve 20% of

the benchmarks (despite already incorporating the modular

aspect of Volt). We also present several ablations of Volt

and show that our main ideas are all crucial for making the

proposed approach feasible in practice.

References

[1] [n.d.]. CVE-2005-0034. https://nvd.nist.gov/vuln/detail/CVE-2005-
0034.

[2] [n.d.]. CVE-2010-1013. https://nvd.nist.gov/vuln/detail/CVE-2010-
1013.

[3] [n.d.]. CVE-2016-5195. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=cve-2016-5195.

[4] [n.d.]. CVE-2017-7308. https://nvd.nist.gov/vuln/detail/CVE-2017-
7308.

[5] [n.d.]. Netty. https://github.com/netty/netty.
[6] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian

Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write

Programs. arXiv:1611.01989 [cs.LG]

[7] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-Time

Learning for Bottom-Up Enumerative Synthesis.

[8] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng.

2020. Program Synthesis Using Deduction-Guided Reinforcement Learn-
ing. 587–610. https://doi.org/10.1007/978-3-030-53291-8_30

[9] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel,

and Marek Trtik. 2018. JBMC: A bounded model checking tool for

verifying Java bytecode. In International Conference on Computer Aided
Verification. Springer, 183–190.

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT

solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 337–340.

[11] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam

Chlipala. 2015. Fiat: Deductive Synthesis of Abstract Data Types in a

Proof Assistant. In Proc. of POPL. 689–700.
[12] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,

Jeff H. Perkins, and Martin Rinard. 2006. Inference and Enforcement of

Data Structure Consistency Specifications. In Proceedings of the 2006
International Symposium on Software Testing and Analysis (Portland,
Maine). 233–244.

[13] Brian Demsky and Martin C. Rinard. 2003. Automatic Detection and

Repair of Errors in Data Structures. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (Anaheim, California). 78–95.

[14] Brian Demsky and Martin C. Rinard. 2003. Static Specification Anal-

ysis for Termination of Specification-Based Data Structure Repair.

In Proceedings of the 14th IEEE International Symposium on Software
Reliability Engineering (Denver, Colorado). 71–84.

[15] Brian Demsky and Martin C. Rinard. 2005. Data Structure Repair

Using Goal-Directed Reasoning. In Proceedings of the 2005 International
Conference on Software Engineering (St. Louis, Missouri). 176–185.

[16] Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Precise Reasoning for

Programs Using Containers. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). Association for ComputingMachinery,

New York, NY, USA, 187–200. https://doi.org/10.1145/1926385.1926407

https://nvd.nist.gov/vuln/detail/CVE-2005-0034
https://nvd.nist.gov/vuln/detail/CVE-2005-0034
https://nvd.nist.gov/vuln/detail/CVE-2010-1013
https://nvd.nist.gov/vuln/detail/CVE-2010-1013
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://github.com/netty/netty
https://arxiv.org/abs/1611.01989
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1145/1926385.1926407

PLDI ’21, June 20–25, 2021, Virtual, Canada Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

[17] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program

synthesis using conflict-driven learning. In Proceedings of PLDI. 420–
435.

[18] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat

Chaudhuri. 2017. Component-based synthesis of table consolidation

and transformation tasks from examples. In Proceedings of PLDI. 422–
436.

[19] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.

Reps. 2017. Component-based synthesis for complex APIs. In Proc. of
POPL. 599–612.

[20] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing

data structure transformations from input-output examples. In Proc.
of PLDI. 229–239.

[21] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly

Sagiv. 2011. Data Representation Synthesis. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Jose, California, USA) (PLDI ’11). Association for

Computing Machinery, New York, NY, USA, 38–49. https://doi.org/
10.1145/1993498.1993504

[22] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and

Mooly Sagiv. 2012. Concurrent Data Representation Synthesis. In

Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (Beijing, China) (PLDI ’12). As-
sociation for Computing Machinery, New York, NY, USA, 417–428.

https://doi.org/10.1145/2254064.2254114
[23] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-

Lezama. 2015. JSketch: sketching for Java. In Proc. of ESEC/FSE. 934–
937.

[24] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.

Oracle-guided component-based program synthesis. In Proc. of ICSE.
215–224.

[25] Manos Koukoutos, Mukund Raghothaman, Etienne Kneuss, and Viktor

Kuncak. 2017. On Repair with Probabilistic Attribute Grammars. (07

2017).

[26] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011.

The Soot framework for Java program analysis: a retrospective.

[27] Patrick Lam, Viktor Kuncak, and Martin Rinard. 2005. Generalized

Typestate Checking for Data Structure Consistency. In Proceedings of
the 6th International Conference on Verification, Model Checking, and
Abstract Interpretation (Paris, France) (VMCAI’05). Springer-Verlag,
Berlin, Heidelberg, 430–447. https://doi.org/10.1007/978-3-540-30579-
8_28

[28] Patrick Lam, Viktor Kuncak, and Martin Rinard. 2005. Hob: A Tool for

Verifying Data Structure Consistency. https://doi.org/10.1007/978-3-
540-31985-6_16

[29] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accel-

erating Search-Based Program Synthesis Using Learned Probabilistic

Models (PLDI 2018). Association for Computing Machinery, New York,

NY, USA, 436–449. https://doi.org/10.1145/3192366.3192410
[30] K. Rustan M. Leino and Peter Müller. 2004. Object Invariants in Dy-

namic Contexts. In ECOOP 2004 – Object-Oriented Programming, Mar-

tin Odersky (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 491–

515.

[31] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to anal-

ysis using S park. In International Conference on Compiler Construction.
Springer, 153–169.

[32] Boyang Li, Isil Dillig, Thomas Dillig, K. McMillan, and S. Sagiv. 2013.

Synthesis of Circular Compositional Program Proofs via Abduction.

In TACAS.
[33] Calvin Loncaric, Michael D. Ernst, and Emina Torlak. 2018. General-

ized Data Structure Synthesis. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 958–968.

https://doi.org/10.1145/3180155.3180211
[34] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019.

Trinity: An Extensible Synthesis Framework for Data Science. PVLDB
12, 12 (2019), 1914–1917.

[35] Kenneth L. McMillan. 1999. Circular Compositional Reasoning about

Liveness. In Proceedings of the 10th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Meth-
ods (CHARME ’99). Springer-Verlag, Berlin, Heidelberg, 342–345.

[36] John Sarracino, Shraddha Barke, Nadia Polikarpova, and Sorin Lerner.

2019. Targeted Synthesis for Programming with Data Invariants. CoRR
abs/1904.13049 (2019). arXiv:1904.13049 http://arxiv.org/abs/1904.
13049

[37] Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel:

component-based synthesis with control structures. Proc. ACM Pro-
gram. Lang. 3, POPL (2019), 73:1–73:29.

[38] Xujie Si, Y. Yang, Hanjun Dai, M. Naik, and L. Song. 2019. Learning a

Meta-Solver for Syntax-Guided Program Synthesis. In ICLR.
[39] Philippe Suter, Mirco Dotta, and Viktor Kuncak. 2010. Decision

Procedures for Algebraic Data Types with Abstractions. In Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (Madrid, Spain) (POPL ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 199–210.

https://doi.org/10.1145/1706299.1706325
[40] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthe-

sizing highly expressive SQL queries from input-output examples. In

Proceedings of PLDI. 452–466.
[41] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Syn-

thesizing database programs for schema refactoring. In Proceedings of
PLDI. 286–300.

https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1145/2254064.2254114
https://doi.org/10.1007/978-3-540-30579-8_28
https://doi.org/10.1007/978-3-540-30579-8_28
https://doi.org/10.1007/978-3-540-31985-6_16
https://doi.org/10.1007/978-3-540-31985-6_16
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3180155.3180211
https://arxiv.org/abs/1904.13049
http://arxiv.org/abs/1904.13049
http://arxiv.org/abs/1904.13049
https://doi.org/10.1145/1706299.1706325

	Abstract
	1 Introduction
	2 Overview
	3 Problem Formulation
	4 Data Structure Refinement Algorithm
	4.1 Preliminaries
	4.2 Modular Refinement Algorithm
	4.3 Inductive Synthesis Algorithm
	4.4 PCFG Initialization

	5 Implementation
	6 Evaluation
	6.1 Main results
	6.2 Comparison against baselines
	6.3 Ablation Study

	7 Related Work
	Acknowledgments
	8 Conclusion
	References

