
Semantic Code Refactoring for Abstract Data Types

SHANKARA PAILOOR, University of Texas, USA

YUEPENG WANG, Simon Fraser University, Canada

IŞIL DILLIG, University of Texas, USA

Modi�cations to the data representation of an abstract data type (ADT) can require signi�cant semantic

refactoring of the code. Motivated by this observation, this paper presents a new method to automate

semantic code refactoring tasks. Our method takes as input the original ADT implementation, a new data

representation, and a so-called relational representation invariant (relating the old and new data representations),

and automatically generates a new ADT implementation that is semantically equivalent to the original version.

Our method is based on counterexample-guided inductive synthesis (CEGIS) but leverages three key ideas

that allow it to handle real-world refactoring tasks. First, our approach reduces the underlying relational

synthesis problem to a set of (simpler) programming-by-example problems, one for each method in the ADT.

Second, it leverages symbolic reasoning techniques, based on logical abduction, to deduce code snippets that

should occur in the refactored version. Finally, it utilizes a notion of partial equivalence to make inductive

synthesis much more e�ective in this setting. We have implemented the proposed approach in a new tool

called Revamp for automatically refactoring Java classes and evaluated it on 30 Java class mined from Github.

Our evaluation shows that Revamp can correctly refactor the entire ADT in 97% of the cases and that it can

successfully re-implement 144 out of the 146 methods that require modi�cations.

CCS Concepts: • Software and its engineering→ Abstract data types.

Additional Key Words and Phrases: Program Synthesis, Abstract Data Types, Refactoring

ACM Reference Format:

Shankara Pailoor, Yuepeng Wang, and Işıl Dillig. 2024. Semantic Code Refactoring for Abstract Data Types.

Proc. ACM Program. Lang. 8, POPL, Article 28 (January 2024), 32 pages. https://doi.org/10.1145/3632870

1 INTRODUCTION

Abstract data types (ADTs) separate the software interface from its underlying data representation,
allowing code modi�cations that are hidden from clients. However, even small changes to the
data representation can require substantial modi�cations to the underlying implementation of the
ADT. As an example, consider the code shown on the left-side of Figure 1, which is taken from the
BitmapTracker ADT in Glide [gli 2023], a popular image loading and caching library for Android.
The original implementation of this ADT uses two data structures: a set (pending) to keep track
of bitmaps that are pending deletion (represented by their hash code), along with a separate data
structure (cntr) to keep track of bitmaps and the number of times they have been acquired. Rather
than maintaining this information across two data structures, the developers decide to consolidate
them as a single hash map also named cntr. The new data structure associates each bitmap with
a newly de�ned InnerTracker object which has a �eld (pending) to keep track of whether the
bitmap is pending deletion and a �eld (refs) to store the number of times the bitmap has been
acquired. As is evident from the “di�” in Figure 1, making this change also necessitates substantial

Authors’ addresses: Shankara Pailoor, spailoor@cs.utexas.edu, University of Texas, Austin, USA; Yuepeng Wang, yuepeng@

sfu.ca, Simon Fraser University, Vancouver, Canada; Işıl Dillig, isil@cs.utexas.edu, University of Texas, Austin, USA.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART28

https://doi.org/10.1145/3632870

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-9253-9585
HTTPS://ORCID.ORG/0000-0003-3370-2431
HTTPS://ORCID.ORG/0000-0001-8006-1230
https://doi.org/10.1145/3632870
https://orcid.org/0000-0002-9253-9585
https://orcid.org/0000-0003-3370-2431
https://orcid.org/0000-0001-8006-1230
https://doi.org/10.1145/3632870
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632870&domain=pdf&date_stamp=2024-01-05

28:2 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

1 1
2 2
3
4 3
5 4
6 5

7 6
7

8 8
9 9
10 10
11 11
12
13
14 12
15 13
16 14
17 15
18 16
19 17

18
19
20
21

20 22
21 23
22 24
23 25
24 26
25 27
26 28

29
30

27 31
28 32
29 33
30 34
31 35
32 36
33 37
34 38

39
40

35 41
36 42
37 43
38 44
39 45
40 46
41 47
42 48

49
43 50
44
45 51
46
47 52

public class BitmapTrackerOrig { public class BitmapTrackerNew {
 public Set<Integer> pending; public Map<Integer, InnerTracker> cntr;
 public BitmapReferenceCounter cntr;

 public static class BitMapReferenceCounter() { public static class InnerTracker {
 public Map<Integer, Integer> cntrs = new H
ashMap<>();

 public int refs = 0;

 public boolean pending = false;
 ...

 } }

 public BitmapTrackerOrig() { public BitmapTrackerNew() {
 this.cntr = new BitmapReferenceCounter(); this.cntr = new HashMap<>();
 this.pending = new HashSet<>();

 } }

 public void acquireBitmap(Bitmap bitmap) { public void acquireBitmap(Bitmap bitmap) {
 int hashCode = bitmap.hashCode(); int hashCode = bitmap.hashCode();
 pending.remove(hashCode); InnerTracker tracker = cntr.get(hashCode);
 cntr.inc(hashCode); if (tracker == null) {

 tracker = new InnerTracker();
 }
 tracker.acquire();
 cntr.put(bitmap.hashCode(), tracker);

 } }

 public void releaseBitmap(Bitmap bitmap) { public void releaseBitmap(Bitmap bitmap) {
 int hashCode = bitmap.hashCode(); int hashCode = bitmap.hashCode();
 if (cntr.dec(hashCode) == 0 InnerTracker tracker = cntr.get(hashCode);
 &&!pending.contains(hashCode)) { if (tracker != null) {
 cntr.rem(hashCode); if (tracker.release()) {

 cntr.remove(hashCode);
 }

 } }
 } }

 public void rejectBitmap(Bitmap bitmap) { public void rejectBitmap(Bitmap bitmap) {
 int hashCode = bitmap.hashCode(); int hashCode = bitmap.hashCode();
 pending.remove(hashCode); InnerTracker tracker = cntr.get(hashCode);
 if (cntr.get(hashCode) == 0) { if (tracker != null) {
 cntr.rem(hashCode); if (tracker.reject()) {

 cntr.remove(hashCode);
 }

 } }
 } }

 public void markPending(Bitmap bitmap) { public void markPending(Bitmap bitmap) {
 int hashCode = bitmap.hashCode(); int hashCode = bitmap.hashCode();
 if (!cntr.cntrs.containsKey(hashCode)) InnerTracker tracker = cntr.get(hashCode);
 return; if (tracker != null) {
 pending.add(hashCode); tracker.markPending();

 }
 } }

} }
Fig. 1. Example ADT refactoring to motivating our technique

modi�cations to the code of the BitmapTracker ADT. More generally, such code refactorings can
be quite involved and sometimes even introduce subtle bugs and security vulnerabilities [cve 2003,
2005; ref 2009, 2022].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:3

1 public boolean check(BitmapTrackerOrig o, BitmapTrackerNew n) {

2 if (!o.cntr.cntrs.keySet ().equals(n.cntr.keySet ())

3 return false;

4 for(Entry c : o.cntr.cntrs) {

5 InnerTracker inner = n.cntr.get(c.getKey ());

6 if (inner.refs != c.getValue ()) return false;

7 if (inner.pending != pending.contains(c.getKey ()))

8 return false;}

9 return true;

10 }
Fig. 2. Relational representation invariant.

Motivated by this problem, the goal of this paper is to automate this semantic code refactoring

task for abstract data types. Given the original ADT implementation and a relational speci�cation
relating the old and new data representations, our method automatically synthesizes the new
ADT implementation from its original version. Because such relational speci�cations can be easily
expressed as a simple boolean function (e.g., see Figure 2), our method can greatly simplify the
ADT refactoring task compared to manually changing the implementation. Furthermore, this
automated refactoring approach can eliminate subtle bugs that may be introduced during the
manual refactoring process.

To gain some intuition about the relational speci�cations required by our method, consider the
boolean check procedure shown in Figure 2. At a high level, this method describes the refactoring
task for the BitmapTracker ADT by providing a relational representation invariant (RRI), which
is similar to the standard notion of representation (rep) invariant [Delaware et al. 2015; Guttag
et al. 1978; Miltner et al. 2020]. Just as a rep invariant checks whether an ADT instance obeys key
data integrity constraints, an RRI checks key data integrity constraints between two alternative
representations of an ADT. For example, going back to our running BitmapTracker example, the
check function in Figure 2 states the following relationship between the original �elds and new
one:

(1) The map (cntr.cntrs) in the original implementation and map (counter) in the new version
must have the same keys;

(2) For every (id, count) entry in the original map (cntr.cntrs), there should exist an entry
(id, tracker) in the new map (cntr) such that count = tracker.refs, and tracker.pending is true
if and only if pending contains id.

Given such a relational representation (expressed as a boolean function), the goal of our method
is to automatically generate the code shown on the right hand side of Figure 1 from its original
version on the left.

The key contribution of this paper is a novel program synthesis technique for solving this
problem. Despite being an instantiation of the popular counterexample-guided inductive synthesis
(CEGIS) paradigm at a high level, our synthesis approach utilizes three novel insights that allow
automating real-world ADT refactoring tasks:

• Idea #1: Speci�cation strengthening:When the veri�er fails to prove equivalence between
the original implementation and a candidate synthesis result, it can provide a counterexample in
the form of a disequality 5 (�) ≠ $, meaning that the implementation of function 5 should not
produce ADT instance$ when executed on input � . However, because this feedback is very weak,
the CEGIS loop can take many iterations to converge. Our approach addresses this problem by
utilizing the semantics of the RRI to strengthen the speci�cation into equalities (i.e., input-output
examples) rather than disequalities.
• Idea #2: Mining code snippets via symbolic reasoning: Our approach leverages symbolic
reasoning techniques, based on logical abduction, to identify key building blocks that are likely to

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:4 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

Inductive
synthesizer

Verifier

Symbolic
reasoning engine

Relational
Representation
Invariant (RRI)

Old ADT
implementation

Method satisfying
I/O examples

Counterexample
to equivalence

Components &
 I/O examples

Refactored ADT

Fig. 3. Overview of our approach

be used in the refactored implementation. Because the identi�ed code snippets can be complex
statements or expressions, symbolic reasoning can dramatically reduce the search space that the
synthesizer needs to explore.
• Idea #3: Exploiting partial equivalence: An inductive synthesizer typically enumerates many
incorrect programs before it �nds the target implementation. In our context, these enumerated
programs are often not completely equivalent to the original implementation, but they are partially
equivalent with respect to a subset of the ADT �elds. Our other key insight is to leverage this
notion of partial equivalence to progressively build up larger programs from smaller ones that
are correct with respect to some ADT �elds.

Figure 3 gives a schematic overview of our high-level approach. As shown in this �gure, our
technical approach is an instance of CEGIS and incorporates an inductive synthesizer and a veri�er.
In this context, the inductive synthesizer takes as input (1) a set of input-output examples � (for
each method< in the ADT) and (2) a grammar de�ning its search space, and it outputs a new
method implementation<′ satisfying all examples in �. The veri�er is then tasked with checking
whether< and<′ are equivalentmodulo the user-speci�ed RRI. If veri�cation succeeds,<′ is added
to the refactored implementation of the ADT and the algorithm moves on to the next method. On
the other hand, if veri�cation fails, the veri�er outputs a counterexample to equivalence, which is
a pair of inputs � , � ′ for< and<′ such that � , � ′ satisfy the RRI but<(�) and<′ (� ′) do not satisfy
it. This counterexample is then provided as input to the symbolic reasoning engine, which is one
of the key novelties of our technique. In particular, the symbolic reasoning engine performs two
functions: First, it converts the counterexample to equivalence produced by the veri�er to a concrete
input-output example for the target function by utilizing the semantics of the RRI (i.e., Idea #1).
This speci�cation strengthening idea essentially allows converting a weak disequality of the form
<′ (� ′) ≠ $1 to an equality<′ (� ′) = $2, thereby allowing the CEGIS loop to make much faster
progress. Second, it uses the counterexample, together with the RRI and the implementation of<,
to infer code snippets that are likely to be used in the refactored implementation (i.e., Idea #2). As
stated earlier, these inferred snippets are useful because they allow the inductive synthesizer to
leverage complex expressions as components rather than having to search for them from scratch.
The other novel aspect of our ADT refactoring algorithm is the inductive synthesis engine

depicted in Figure 4. Similar to many other inductive synthesizers, our method is based on enu-
merative search; however, it utilizes the notion of partial equivalence (i.e., Idea #3) to perform
bi-directional search [Alur et al. 2015; Lee 2021; Shi et al. 2019]. In more detail, the search engine
performs top-down enumeration by maintaining a worklist of partial programs that are gradually
expanded to form complete programs. The key di�erence, however, is that, rather than discarding

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:5

Search
engine

Field-wise
equivalence checker

Code
Assembler

Probabilistic
Context-Free

Grammar (PCFG)

Input-output
examples

Candidate
implementation

Updated
worklist

Refactored
method

ADT Fields ℱ

ℱ′ = ℱ

ℱ′ ⊂ ℱ

$

$

Inductive Synthesizer

Fig. 4. Overview of our inductive synthesizer

complete programs that are inconsistent with the input-output examples, our approach retains

those programs that produce the intended output with respect to a subset of the ADT �elds. To do so,
it injects these “partially equivalent" programs into the frontier of the search engine by combining
them with existing programs in the worklist (i.e., Code Assembler component in Figure 4). Hence,
this strategy combines top-down enumeration with bottom-up search and extends the idea of
partial satisfaction used in prior work [Lee 2021; Shi et al. 2019] to the program equivalence setting.

We have implemented our proposed approach in a tool called Revamp targeting Java programs,
and we use Revamp to perform semantic ADT refactoring tasks mined from GitHub commits.
Our benchmarks span 30 di�erent ADTs and require re-implementing a total of 146 methods. Our
experiments show that Revamp can successfully refactor 29 of the 30 (97%) ADTs and reimplement
144 of these methods (99%). We also compare Revamp against other synthesis tools and show that
it signi�cantly outperforms these baselines, both in terms of the number of tasks it can solve as
well as average synthesis time.

To summarize, this paper makes the following key contributions:

• We introduce the semantic ADT refactoring problem as the task of synthesizing the new ADT
implementation from its original version and a relational representation invariant.
• We propose a novel technique that combines symbolic reasoning (based on logical abduction)
with counterexample-guided inductive synthesis to derive the refactored ADT implementation.
• We show how to reduce the ADT refactoring problem to a set of programming-by-example (PBE)

tasks (one for each method of the ADT), and we present an e�ective inductive synthesis approach
that leverages the notion of partial equivalence.
• We perform an empirical evaluation of our approach on 30 real-world ADTs (spanning 146
refactored methods) mined from GitHub. Our results show that our tool, Revamp, can correctly
refactor 99% of the methods and successfully generate the entire ADT in 97% of the cases.

2 OVERVIEW

In this section, we give an overview of our technique through an illustrative example.

Refactoring task. Figure 5 presents the refactoring of a simple 2D Rectangle ADT. This abstract
data type exposes several methods that allow users to create, modify, and query information about
the rectangle such as scaling and �ipping it or getting the minimum G coordinate of any point on
the rectangle. The class RectOrig (upper left box) is the original implementation that represents
the rectangle using three �elds, namely the rectangle’s lower left corner (lc), height (height), and
width (width). Now, suppose that the developer wishes to change the data representation to instead

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:6 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

1 public class RectOrig {
2 Point2D lc; // left corner
3 double height, width;
4
5 public double getMinX() {..}
6 public double getMinY() {..}
7 ..
8 public RectOrig(Point2D lc, double height, width){..}
9
10 public void scaleAndFlip(double h, double w,
11 bool flipX, bool flipY)
12 {
13 if (height - 2*h < 0 || width - 2*w < 0)
14 return;
15 lc.x = lc.x + w;
16 lc.y = lc.y + h;
17 height = height - 2*h;
18 width = width - 2*w;
19 if (flipX)
20 lc.x = -(lc.x + width);
21 if (flipY)
22 lc.y = -(lc.y + height);
23 }
23}

1 bool check(RectOrig o, RectNew r) {
2 if (o.height <= 0 || o.width <= 0)
3 return false;
4 return o.width = r.maxX - r.minX
5 && o.height = r.maxY - r.minY
6 && o.lc.x = r.minX
7 && o.lc.y = r.minY;
9 }

1 public class RectNew {
2 double minX, maxX;
3 double minY, maxY;
4
5 public double getMinX() {..}
6 public double getMinY() {..}
7 ..
8 public RectNew(Point2D lc, double height, width){..}
9
10 public void scaleAndFlip(double h, double w,
11 bool flipX, bool flipY)
12 {
13 if (maxY - minY - 2*h < 0
14 || maxX - minX - 2*w < 0)
15 return;
16 maxX = maxX - w;
17 minX = minX + w;
18 maxY = maxY - h;
19 minY = minY + h;
20 if (flipX) {
21 double tmp = maxX;
22 maxX = -minX;
23 minX = -tmp;
24 }
25 if (flipY) {
26 double tmp = maxY;
27 maxY = -minY;
28 minY = -tmp;
29 }
30 }
31}

Original Implementation

Relational Representation Invariant

New Implementation

Fig. 5. Motivating example showing the original implementation (upper le�), the RRI (the lower le�), and the
refactored implementation (right).

use four �elds that store the minimum and maximum G and ~ coordinates of the rectangle, as
shown on the right side of Figure 5. As we can see by comparing the implementation of RectOrig
and RectNew, changing the data representation induces signi�cant modi�cations to the code.

Using Revamp. Our tool, Revamp, is designed to automatically perform this refactoring task
given a relational representation invariant (RRI) provided by the user. The boolean function check

(bottom left of Figure 5) corresponds to exactly such an RRI and states the following relationship
between the �elds of RectOrig and RectNew:

(1) The width (resp. height) of the rectangle should be equal to the di�erence between the maximum
and minimum G (resp. ~) coordinates.

(2) The G (resp. ~) coordinate of the left corner should be equal to the minX (resp. minY) coordinate.

Given such an RRI, Revamp synthesizes new implementations for all the methods of the rectangle
ADT. For example, Figure 5 shows the new implementation of the scaleAndFlip method that is
automatically synthesized by Revamp.

Our approach. We now give an overview of the salient aspects of our approach. Our solution
independently synthesizes each method of the ADT using the well-known CEGIS paradigm [Jha
et al. 2010; Solar-Lezama et al. 2005, 2006], but it leverages three key observations that we illustrate
through the running example of Figure 5.

Observation #1: Given a suitable RRI, we can reduce the ADT refactoring task to a set of

programming-by-example problems, one for each method of the ADT.

Suppose that, for a given method< of the original ADT, we attempt to synthesize a method
<′ of the new ADT but �nd that<′ is not equivalent to<. In the CEGIS paradigm, we would ask
the veri�er to provide a counterexample. In this case, a counterexample is a pair of input ADT
instances � , � ′ for< and<′ respectively. Since the candidate implementation is wrong, we know
the following two facts:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:7

(1) � and � ′ must satisfy the RRI; otherwise, the veri�er output is not a valid counterexample;
(2) The output ADTs,<(�) and<′ (� ′), do not satisfy the RRI.

Now, what can we learn from such a counterexample? Naively, we can simply learn that the
refactored implementation should not produce output $ ′ when executed on � ′. In other words,
we can learn<′ (� ′) ≠ $ ′. However, this is a very weak signal for the inductive synthesizer — it
simply states that the output must di�er from $ ′, but, since an ADT typically has many �elds, this
speci�cation only rules out a tiny fraction of the behaviors that should be exhibited on input � ′.
One of our key observations is that, under certain realistic assumptions about the RRI, we can

use the veri�er’s output to learn not only what the target implementation should not produce on a
given input, but rather what it should produce. That is, rather than learning a disequality, we can
learn an equality, which corresponds to an input-output example for the target method and serves
as a much stronger signal for the inductive synthesizer.

To understand why we can do this, suppose that we have synthesized a wrong implementation
of scaleAndFlip and suppose that the synthesized code di�ers from the original version for the
following input ADT � (for the original version):

� = {;2 .G = −1, ;2 .~ = −1,F83Cℎ = 2, ℎ486ℎC = 2} (1)

and input ADT � ′ for the refactored version:

� ′ = {<8=- = −1,<8=. = −1,<0G- = 1,<8=- = 1} (2)

as well as the following function arguments:

+ = {ℎ = 0.5,F = 0.5, �ipX = false, �ipY = false} (3)

Given this input ADT � and arguments + , the original scaleAndFlip implementation produces
the output ADT $:

$ = {;2 .G = −0.5, ;2 .~ = −0.5,F83Cℎ = 1, ℎ486ℎC = 1} (4)

Now, by considering this output $ in conjunction with the semantics of the RRI, we can determine
precisely what the refactored method should return. Speci�cally, because the RRI speci�es that minX
and minY of the new rectangle must equal lc.x and lc.y of the original rectangle respectively, we
know the refactored implementation must produce an ADT where minX and minY are both equal
to −0.5. Similarly, because maxX and maxY in the new implementation are completely determined
by variables lc, height, and width in the original implementation, we can infer (using an SMT
solver) that<0G. = 0.5 and<0G- = 0.5. This observation allows us to obtain the following output
$ ′ for the refactored version of scaleAndFlip:

$ ′ = {<8=- = −0.5,<8=. = −0.5,<0G- = 0.5,<0G. = 0.5} (5)

Observation #2:We can use symbolic reasoning to learn useful code snippets that are likely to

be used in the refactored implementation.

Our second observation is that the semantics of the RRI is not only useful for speci�cation
strengthening but also for learning code snippets that the inductive synthesizer should use. To gain
intuition, let us examine the execution path taken by the original scaleAndFlip method given the
input ADT � and argument values + from Equations 1 and 3. This input exercises the following
path % in the original implementation:

assume(height - 2*h >= 0);

assume(width - 2*w >= 0);

lc.x := lc.x + w;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:8 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

lc.y := lc.y + h;

height := height - 2h;

width := width - 2w;

assume (!flipX);

assume (!flipY);

Now, we know from the RRI that lc.x is equal to minX and that lc.y is equal to minY. Hence,
it is fairly easy to deduce that there must be a corresponding execution path of the refactored
implementation that contains the statements minX := minX + w as well as minY := minY + h.

But what can we deduce about maxX and maxY of the refactored ADT? Unlike minX and minY, there
is no obvious mapping from maxX and maxY to one of the variables in the original implementation.
Nonetheless, we can use symbolic reasoning to infer how maxX and maxY should be updated in the
corresponding execution path % ′ of the refactoring. To see how, observe that % and % ′ must satisfy
the following Hoare triple:

{ℎ486ℎC =<0G. −<8=. } % ; % ′ {ℎ486ℎC =<0G. −<8=. }

because the RRI stipulates that ℎ486ℎC is equal to<0G. −<8=. . Since we have already established
that % ′ must contain the statement minY := minY + h per the discussion above, it becomes clear
that % ′ should also contain the statement maxY := maxY+ h in order for the above Hoare triple to
be valid. Using similar reasoning, we can infer that % ′ should also update maxX using the statement
maxX := maxX + w.

As illustrated through this example, we can symbolically deduce code snippets that the refactored
implementation should contain by considering the RRI in conjunction with the original implemen-
tation. In Section 4.4, we show how this kind of deduction can be performed using a combination
of symbolic execution and logical abduction.

Observation #3: We can leverage partial equivalence with respect to ADT �elds to make

inductive synthesis more e�ective.

Consider the refactored implementation of scaleAndFlip, shown on the right side of Figure 5,
which performs multiple distinct updates to each of the four �elds of the new ADT. Our key
observation here is that �eld updates are oftentimes independent of each other, meaning that the
new value of a �eld often does not depend on the values of several other �elds. For example, in the
refactored code, the update on maxX is completely independent of the update to maxY. However,
the refactored implementation is only correct when the updates on all �elds are correct. As a result,
a search-based synthesizer might discard candidate synthesis results even when it produces the
correct implementation when considering a subset of the �elds.

To gain more intuition about this idea, consider a variant of the scaleAndFlip implementation
on the right side of Figure 5 with all updates to maxY and minY deleted. While this implementation
is not equivalent to the original version, it is equivalent when we only consider the values of �elds
maxX and minX. We refer to this weaker notion of equivalence with respect to a subset of the �elds
as partial equivalence, and we leverage this concept to make inductive synthesis more e�cient by
combining top-down search with bottom-up synthesis.
For example, suppose we encounter a code snippet<0G- :=<0G- −F that correctly updates

the<0G- �eld. Later, when we enumerate the partially equivalent program<0G. :=<0G. − ℎ,
we can combine it with<0G- :=<0G- −F to obtain a larger code snippet that correctly updates
both �elds. Because there are several reasonable ways to combine code snippets, our approach
considers several combinations, such as:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:9

1 maxX := maxX - w;

2 maxY := maxY - h;

as well as

1 if (??) {

2 maxX := maxX - w;

3 } else {

4 maxY := maxY - h;

5 }

By identifying and combining code snippets that are partially equivalent to the original code, we
can often quickly build up the correct refactored implementation.

3 PROBLEM STATEMENT

We represent an abstract data type (ADT)A as a set ΣA of operations (methods) that can be invoked
on instances of that type. For example, a Stack ADT is represented using the signature Σ = {push,
pop, top, empty, constructor}. Every element< ∈ Σ has its own signatureA×) → A×) ′. That
is, every method takes as input an argument of type) and instance of the ADT and returns an
output of type) ′, along with a (possibly modi�ed) instance of that ADT.

An implementation �A of an ADTA is a tuple (�,") where � is a set of �elds (the data represen-
tation) and " is a mapping from every element< ∈ ΣA to its concrete implementation<� . We
write > ∈ �A to denote instances of �A . Also, we use the notationA� to denote any implementation
of A with data representation � , and we write > ∈ A� to denote that > is an instance of some
�A = (�, _). Since di�erent implementations of an ADT can use di�erent data representations, we
next introduce the notion of relational representation invariant (RRI):

De�nition 3.1 (Relational Representation Invariant (RRI)). Let � and � ′ be two di�erent
data representations of the same ADTA and let ∼ ⊆ A� ×A� ′ be a binary relation. We say that ∼
is a relational representation invariant between A� and A� ′ if it has the following properties:

∀> ∈ A� .∀>1, >2 ∈ A� ′ . > ∼ >1 ∧ > ∼ >2 ⇒ >1 = >2 (6)

∀> ∈ A� .∃>
′ ∈ A� ′ . > ∼ >

′ (7)

Intuitively, Equations 6 and 7 (henceforth jointly referred to as the RRI property) state that
the binary relation should be precise enough so that, for any instance > of A� , we can reconstruct
a unique instance > ′ of A′� satisfying > ∼ > ′. Note that this RRI property is a basic requirement
for being able to automate the refactoring task. Without such a property, there may be multiple
implementations of the new ADT that will satisfy the RRI but yield semantically di�erent ADT
instances. In such a case, it is unclear which refactoring the programmer actually intended, so we
require the RRI to satisfy Equations 6 and 7.

Theorem 3.2. Let � and � ′ be two di�erent data representations of the same ADT A and let ∼ be

a relational representation invariant between A� and A� ′ . Then for any instance > ∈ A� there is a

unique > ′ ∈ A� ′ such that > ∼ > ′.

Proof. From Equation 7, it follows there exists > ′ such that > ∼ > ′. To show uniqueness, consider
an > ′′ such that > ∼ > ′ and > ∼ > ′′. Then from equation 6, we have that > ′ = > ′′. □

Next, we de�ne equivalence modulo an RRI:

De�nition 3.3 (Input/output equivalence modulo RRI). Let >, > ′ be a pair of ADT instances
over data representations �, � ′ respectively, and let E, E ′ be the arguments or return value of a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:10 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

o ∼ o′

o′ , vAfter

o, v o
r
, v

r

o′
r
, v

r

Before

Input Output
m

I

m
I′

o
r

∼ o′
r

Fig. 6. Illustration of correctness of ADT refactoring. Objects in pink denote the version before refactoring,
and objects in green denote the version a�er refactoring.

function. We say that (>, E) is equivalent to (> ′, E ′) modulo an RRI (∼), denoted (>, E) ≃ (> ′, E ′) i�
> ∼ > ′ and E = E ′.

De�nition 3.4 (Method equivalence modulo RRI). Let A be an ADT containing method
signature< : A ×) → A ×) ′, and let � = (�,") and � ′ = (� ′, " ′) be two implementations ofA.
We say that<� is equivalent to<� ′ modulo RRI ∼, denoted<� ≃<� ′ if:

∀I ∈ (� ×)). ∀I′ ∈ (� ′ ×)). I ≃ I′ ⇒<� (I) ≃<� ′ (I
′)

In other words, two implementations of the same method are equivalent if they produce equiva-
lent outputs when executed on equivalent inputs (modulo the RRI).

De�nition 3.5 (Correctness of ADT Refactoring). Let � = (�,") and � ′ = (� ′, " ′) be two
di�erent implementations of the same ADT A, and let ∼ be an RRI between A� and A� ′ . Then,
we say that � ′ is a correct refactoring of � with respect to ∼, denoted � ≃ � ′, if, for every< ∈ ΣA ,
we have<� ≃<� ′ .

Intuitively, � ′ is a correct refactoring of � with respect to ∼ if invoking corresponding methods of
� , � ′ on equivalent inputs (modulo ∼) results in outputs that are equivalent modulo the RRI. This
is illustrated schematically in Figure 6. Based on this notion of correctness, we can now formally
state our problem de�nition:

De�nition 3.6 (ADT Refactoring Problem). Let � = (�,") be the original implementation of
an ADT A. Then, given a new data representation � ′ of A and an RRI ∼, the ADT refactoring
problem is to synthesize a new � ′ = (� ′, " ′) such that � ≃ � ′.

4 ADT REFACTORING ALGORITHM

In this section, we describe our algorithm for solving the ADT refactoring problem stated in
De�nition 3.6. Our top-level algorithm ismodular and constructs the refactoredADT by synthesizing
one method at a time. In what follows, we �rst introduce some useful de�nitions and then present
our method-level refactoring algorithm.

4.1 Preliminaries

Recall that each method of the ADT takes as input an ADT instance > and arguments E and returns
an ADT instance > ′ and return values E ′. We use the notation I = (>, E) to denote the inputs to an
ADT method, and O = (>A , EA) to denote its outputs. Given an input or output + = (>, E), we also
write + .03C and + .E0; to denote > and E respectively.

De�nition 4.1 (IO Example). An input-output (IO) example � for a method< is a pair (I,O)
where I denotes<’s inputs and O denotes its outputs.

Given an IO example � (or set of IO examples), we write �.8= to denote the inputs and �.>DC to
denote the outputs. Next, we de�ne the notion of counterexample to equivalence, which plays a
central role in our refactoring procedure:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:11

1: procedure Refactor(<� , �
′, ∼, GM)

input: A method implementation<� for the original ADT implementation � = (�,")
input: The data representation � ′ for the new ADT implementation

input: A relational representation invariant ∼ as a boolean function

input: The meta-grammar GM presented in Figure 7

output: A refactored ADT implementation<� ′ that is equivalent to<� modulo ∼

2: G ← InitPCFG(GM ,<� , �
′)

3: ' ← ∅ ⊲ Relational IO Examples

4: while True do
5: <� ′ ← Synthesize('.=4F,G) ⊲ Inductive synthesis from IO examples

6: 24G, verified← Verify(<� ,<� ′ ,∼) ⊲ Get counterexample to equivalence

7: if verified then

8: return<� ′

9: A ← StrengthenSpec(24G,<� ,<� ′ ,∼) ⊲ Obtain IO example for refactoring

10: ' ← ' ∪ {A }
11: G ← InferSnippets(A,<� ,∼,G) ⊲ Learn useful code snippets and update grammar

12: return ⊥

Algorithm 1. Method refactoring procedure. The underlined statements are the main deviations from a
standard CEGIS loop.

Stmt (→ � | (1; (2 | if(�) (1 else (2 | while(�) (| return ®E

| assert(�) | for (E ∈ �){(}
Atom � → ! ← � | �.<(�1, . . . , �=) | new �

Expr � → E | �.5 | � [�] | �1 ⊗ �1, ⊗ ∈ {+,−,×,÷,mod}
LHS ! → E | ![�] | !.5
Pred � → � | ¬� | �1 ⊕ �2, ⊕ ∈ {≥, <,=}

Fig. 7. Java-like meta-grammar for method implementations. � is the name of an ADT implementation (Java
class).

De�nition 4.2 (Counterexample to equivalence). Let<� and<� ′ be the corresponding methods
for two di�erent implementations of the same ADT ofA, and let ∼ be an RRI relating two di�erent
data representations of A. A counterexample to equivalence is a pair of inputs I,I′ such that
(a) I ≃ I′ and (b)<� (I) ; <� ′ (I

′).

Intuitively, a counterexample to equivalence establishes that two method implementations are
not equivalent modulo the given RRI.

De�nition 4.3 (Relational IO Example). A relational IO example for a method< and RRI ∼ is a
pair of IO examples (�1, �2) such that �1 is a set of IO examples for<’s original implementation,
�2 is a set of IO examples for<’s refactored implementation. Furthermore, we have �1.8= ≃ �2.8=

and �1.>DC ≃ �2.>DC .

Intuitively, a relational IO example for amethod has pairs of inputs and outputs that are equivalent
modulo the RRI. Given a (set of) relational IO examples ', we use the notation '.>;3 to denote the
IO examples for the original implementation and '.=4F to denote the IO examples for the new
(refactored) version.

4.2 Top-Level Procedure

In this section, we present our top-level algorithm, summarized in Algorithm 1, for refactoring an
ADT method. This algorithm takes as input (1) the original implementation<� , (2) the new data

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:12 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

1: procedure StrengthenSpec(24G ,<� ,<� ′ , RRI)

input: A counterexample to equivalence 24G = (I,I′)
input: The original ADT implementation<�

input: The incorrect method implementation<� ′

input: RRI, the relational representation invariant expressed as a boolean function

output: A relational IO example A

2: (>A , EA) ←<� (I)
3: ''� m ← (''� [>A /0A61]) ↓ (A4C = ⊤) ⊲ Restrict RRI’s �rst input to >A and return value to true

4: >′A ← Model(⟦''� m⟧) ⊲ Invoke SMT solver to �nd concrete output ADT for refactoring

5: �1 ← (I, (>A , EA))
6: �2 ← (I

′, (>′A , EA)) ⊲ Construct IO example for refactoring

7: return (�1, �2) ⊲ Return relational IO example

Algorithm 2. Strengthens a counterexample to a relational IO example. We use the notation 5 ↓ (A4C = E) to
only consider executions where 5 returns value E .

representation � ′, (3) the user-speci�ed RRI ∼, and (4) the meta-grammar GM presented in Figure 7
corresponding to a core subset of Java since our implementation targets Java. Refactor starts by
calling InitPCFG to instantiate the meta-grammar into a PCFG by adding productions speci�c to
the method being refactored and the new ADT. Internally, InitPCFG statically analyzes the method
being refactored and adds the following terminals: (1) all function calls (including constructors)
that are accessible from the new ADT, (2) all variables accessible from the method being refactored,
(3) all �elds accessible from the ADT being refactored. It then assigns uniform probabilities for
all productions sharing the same non-terminal, but, as we discuss shortly, these probabilities and
productions are updated after learning code snippets via symbolic reasoning.

The main loop of the Refactor procedure (lines 4–11) is an instantiation of the CEGIS framework,
with key di�erences underlined in Algorithm 1. The algorithm internally maintains a set of relational
IO examples ' and, in each iteration, it attempts to �nd a candidate refactoring<� ′ that is consistent
with IO examples '.=4F by calling the Synthesize procedure (line 4). It then calls Verify to check
whether the candidate refactoring<� ′ is equivalent (modulo the RRI) to the original implementation
<� and obtains a counterexample to equivalence, 24G , otherwise. The novel part of the synthesis
procedure corresponds to lines 9–11 and involves two auxiliary procedures:

• StrengthenSpec: Given a counterexample to equivalence, the StrengthenSpec procedure is
used to obtain the corresponding relational IO example.
• InferSnippets: Given a new relational counterexample A , InferSnippets (a) identi�es a set of
useful code snippets, (b) adds these snippets as productions to the grammar, and (c) updates the
probabilities of each production in the PCFG.

In the subsequent sections, we explain the StrengthenSpec, InferSnippets, and Synthesize

procedures in more detail.

4.3 Specification Strengthening

Our method for speci�cation strengthening is presented in Algorithm 2. This procedure takes as
input a counterexample to equivalence (24G = (I,I′)) between<� and<� ′ and infers an input-
output example for the target refactoring by utilizing the semantics of the RRI. In more detail, the
algorithm works as follows:

• First, it executes the reference implementation<� on input I to obtain the new ADT instance >A
and return value EA (line 2).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:13

• Next, at line 3, it obtains a partially evaluated version ''� m of the RRI by substituting its �rst
argument with ADT instance >A and restricting its return value to CAD4 .1 Note that, because of
the RRI properties from Equations 6 and 7, ''� m can always be simpli�ed to straight-line code.
• Then, the algorithm converts ''� m to a logical formula, ⟦''� m⟧, that encodes its semantics. Note
that there is only one free variable in this formula, which corresponds to the refactored version
of the ADT. Furthermore, because of the RRI property, we can show that the formula ⟦''� m⟧ has
a unique model > ′A (line 4).
• Finally, since the output of the refactored method is given by (> ′A , EA), StrengthenSpec constructs
an IO example for the refactored version and returns the corresponding relational IO example.

The remainder of this subsection states and proves the claims made in this discussion.

Theorem 4.4. Given a relational representation invariant RRI, expressed as a deterministic boolean

function, and a concrete instance > for the original ADT, there is a unique path ?> in ''� such that for

any instance > ′ for the new ADT, if ''� returns true given > and > ′ as input, then ''� executes ?> .

Proof. From Theorem 3.2, we know that for any instance > of the original ADT, there is a unique
instance > ′ in the new ADT such that ''� (>, > ′) returns true. Since ''� is deterministic, there is
exactly one path, ?> , that can be executed when evaluating ''� on inputs > and > ′. □

We refer to ?> as the satisfying path for > , and it follows from this theorem that ''� m (at line 3
of Algorithm 2) can be expressed as a straight-line program %> by converting path ?> to its code
representation in the standard way [Dijkstra 1975]. Next, we de�ne the logical encoding function
(⟦·⟧) used at line 4 of Algorithm 2.

De�nition 4.5 (Logical encoding). Let< be a method that takes inputs G and returns outputs ~.
We say that a formula ⟦<⟧ is a logical encoding of< i�, for any interpretationM of ⟦<⟧, we have:

M |= ⟦<⟧ i� <(M(G)) =M(~)

In other words, ⟦<⟧ is a logical encoding of method< if the models of ⟦<⟧ correspond precisely
to the input-output behavior of<. Note that ⟦<⟧ can always be computed precisely for loop-free
code using standard techniques [Dijkstra 1975].

Example 4.6. Consider the following simple RRI expressed as a boolean function between ADT
implementations $, # where $ has an integer �eld G and # has an integer �eld ~:

boolean rri(O o, N n) {

if (o.x > 0) return o.x == n.y + 1;

else return o.x == n.y - 1;

}

Its logical encoding is the following formula (where A4C denotes the return value of rri):

(>.G > 0→ (ret = ⊤ ↔ (>.G = =.~ + 1)))
∧(>.G ≤ 0→ (ret = ⊤ ↔ (>.G = =.~ − 1)))

We can show that the formula ⟦''� m⟧ constructed at line 4 of Algorithm 2 has a unique model:

Theorem 4.7. Let ''� m be the partially evaluated function from line 3 of Algorithm 2. Then, there

is a unique model satisfying ⟦''� m⟧.

1Given ''� with body (followed by return statement return ret, we use the notation ''� ↓ (A4C = ⊤) to indicate the

program (; assert(A4C = ⊤) ; return A4C .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:14 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

1: procedure InferSnippets(A ,<� , ∼, G)

input: A Relational IO Example A = (�1, �2)
input: Original method implementation<� over

input +> and output +>A
input: An RRI ∼ over inputs +> ,+=
input: A PCFG G
output: An updated PCFG G′

2: G′ ← G
3: ?∼ ← InducedPath(∼, �1 .8=, �2 .8=)
4: ?′∼ ← InducedPath(∼, �1 .>DC, �2 .>DC)
5: ?< ← InducedPath(<� , �1 .8=)
6: q ← ⟦?∼⟧ ∧+> .E0; = += .E0;

7: k ← ⟦?′∼⟧ ∧+>A .E0; = +=A .E0;

8: j ← Abduce(q ∧ ⟦?<⟧∧? |= k,+= ∪+=A)
9: S ← ∅
10: for all ; ∈ Literals(j) do
11: S ← S ∪ Literal2Snippet(;, Literals(j))

12: return AddToGrammar(G′,S)

Algorithm 3. Infers new code snippets that can help
the synthesizer solve the IO example 2 .

1: procedure AddToGrammar(G, S)
input: A PCFG G = (G2 , ?)
output: A new PCFG G′ = (G′2 , ?

′) which in-

cludes the snippets S
2: G′2 ← G2 ; ?

′ ← ?

3: for all (∈ S do

4: #B ← GetNonterminal(()
5: G′2 .addProduction((#B → ())

6: for all N ∈ nonTerminals(G2) do
7: 'N ← getProductions(G2 ,N)
8: 'S ← getAddedProductions(G2 ,N)

9: ?′ ← ?′ [A(→
(1−nN)
|'(|

, ∀A(∈ '(]

10: ?′ ← ?′ [A3 →
nN

|'N |− |'(|
, ∀A3 ∈ ' \ '(]

11: return (G′2 , ?
′)

Algorithm 4. Adds code snippets S to PCFG G with
base grammar G2 and probability function ? and up-
dates the probabilities. nN is a real-valued parameter
between 0 and 1 that is associated with nonterminal
N in the grammar.

Proof. LetM1 andM2 be models of ⟦''� m⟧ which map input variable 0A62 to a concrete value.
Since they are both models of ⟦''� m⟧, we have that ''� m (M1 (0A62)) = ''� m (M2 (0A62)) = True.
From the de�nition of ''� m , we have that ''� m (M1 (0A62)) = ''� (>A ,M1 (0A62)) for a concrete
instance >A . Likewise, we have ''�

m (M2 (0A62)) = ''� (>A ,M2 (0A62)). Since ''� (>A ,M1 (0A62)) =
True and ''� (>A ,M2 (0A62)) = True, and ''� expresses a relational representation invariant, we
can infer from Equation 6 thatM1 (0A62) =M2 (0A62). Thus,M1 =M2. □

Example 4.8. Consider the RRI from Example 4.6 and input instance > = {G → 1}, Then, ⟦''� m⟧
is the formula =.~ = 0 and the model returned for = is {~ → 0}.

4.4 Inferring Code Snippets

In this section, we describe the InferSnippets procedure that is used for identifying code snippets
that are likely to be useful for inductive synthesis. This procedure, presented in Algorithm 3, takes
as input a relational IO example A = (�1, �2), the original method implementation <� , the RRI
∼ (over old variables +> and new variables +=) and PCFG G and returns a new PCFG G′ with
additional code snippets added as productions. At a high level, InferSnippets works as follows:

• First, it executes the RRI on the input examples �1.8= and �2.8= and obtains a straight-line program
?∼ corresponding to the path taken when running the RRI on these inputs (line 3).
• Next, it does the same but for output examples �1.>DC and �2.>DC to obtain another straight-line
program ?′∼ that corresponds to the execution path of the RRI on �1.>DC and �2.>DC (line 4).
• At line 5, it obtains a straight-line program ?< corresponding to the execution of the original
method< on input �1.8=.
• Lines 6–8 set up an abduction problem, with the goal of inferring a logical speci�cation of
the refactored procedure over variables +=,+=A . Recall that logical abduction is the problem of
inferring a missing hypothesis: Speci�cally, given a premise q , desired conclusionk , and a set of
variables + , logical abduction infers a missing (and consistent) hypothesis j over variables +

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:15

such that: q ∧ j |= k . To see what abduction has to do with our problem, recall that we would
like to �nd an implementation of<� ′ satisfying the following Hoare triple:

{+> ≃ +=} +>A :=<� (+>); +=A :=<� ′ (+=) {+>A ≃ +=A }

Essentially, formula q at line 6 of Algorithm 3 corresponds to the precondition of the Hoare triple,
k from line 7 corresponds to the post-condition, and ⟦?<⟧ is the logical encoding of an execution
path for function<� . Thus, to infer how<� ′ should behave for the corresponding execution path,
we need to �nd a formula j over variables +=,+=A such that the following entailment holds:

q ∧ ⟦?<⟧ ∧ j |= k

Finding such a j is precisely an abduction problem; hence, formula j at line 8 of the algorithm
provides a su�cient condition for correctness of<� ′ for a speci�c execution path. Since there
are standard techniques for performing logical abduction [Albarghouthi et al. 2016; Dillig and
Dillig 2013; Dillig et al. 2012, 2013] based on quanti�er elimination, we do not discuss the Abduce
procedure in detail here.
• Next, lines 9–11 of Algorithm 3 mine useful statements and expressions S from the logical
speci�cation j of<� ′ . The basic idea is to translate literals of j to suitable expressions/statements
in the source language via the call to Literal2Snippet at line 11. Since this Literal2Snippet
procedure is based on simple syntax-directed translation, we do not discuss it in detail and
provide more implementation details in Section 5.
• Finally, the algorithm adds the mined componentsS to the grammar and updates the probabilities
of the productions accordingly (line 12).

We now illustrate the InferSnippets procedure using a concrete example:

Example 4.9. Consider again the running example in Section 2. Suppose that the input to Infer-

Snippets is �1 := ((� ,+),$), �2 := ((�
′,+),$ ′) 2 where � , � ′, + , $, and $ ′ are given in Equations

1-5. Then, InferSnippets constructs the following logical encodings of ?∼, ?
′
∼ and ?< :

⟦?∼⟧ := ℎ486ℎC ≥ 0 ∧F83Cℎ ≥ 0 ∧ ;2 .G =<8=- ∧ ;2 .~ =<8=.

∧ℎ486ℎC =<0G. −<8=. ∧F83Cℎ =<0G- −<8=-

⟦?′∼⟧ := ℎ486ℎC ′ ≥ 0 ∧F83Cℎ′ ≥ 0 ∧ ;2 .G ′ =<8=- ′ ∧ ;2 .~′ =<8=. ′

∧ℎ486ℎC ′ =<0G. ′ −<8=. ′ ∧F83Cℎ′ =<0G- ′ −<8=- ′

⟦?<⟧ := F83Cℎ − 2F ≥ 0 ∧ ℎ486ℎC − 2ℎ ≥ 0 ∧ ¬5 ;8?-
∧¬5 ;8?. ∧ ;2 .G ′ = ;2 .G +F ∧ ;2 .~′ = ;2 .~ + ℎ
∧ℎ486ℎC ′ = ℎ486ℎC − 2ℎ ∧F83Cℎ′ = F83Cℎ − 2F

Since ScaleAndFlip does not return any additional values, InferSnippets sets q = ⟦?∼⟧ and
k = ⟦?′∼⟧. Next it calls Abduce with += = {+ , � ′} and +=A = {$ ′} which returns the following:

j =




<0G- −<8=- − 2F ≥ 0 ∧ <0G. −<8=. − 2ℎ ≥ 0

∧ ¬5 ;8?- ∧ ¬5 ;8?. ∧ <8=- ′ =<8=- +F ∧ <0G- ′ =<0G- −F
∧ <8=. ′ =<8=. + ℎ ∧ <0G. ′ =<0G. − ℎ ∧ <0G- −<8=- ≥ 0

∧ <0G. −<8=. ≥ 0

Finally, InferSnippets extracts the literals from j and converts them to snippets via syntax-directed
translation. In particular, it will add the following snippets to the grammar:

(1) (Atomic (�)): <8=- := <8=- + F , <8=. := <8=. + ℎ, <0G- := <0G- − F , and <0G. :=

<0G. − ℎ
(2) (Boolean (�)):<0G- −<8=- − 2F ≥ 0,<0G. −<8=. − 2ℎ > 0, ¬5 ;8?- , ¬5 ;8?. ,<0G- −

<8=- ≥ 0,<0G. −<8=. ≥ 0.
2The return values are omitted for �1 and �2 because ScaleAndFlip does not return a value.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:16 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

1: procedure Synthesize(E, � ′, G)

input: A set of IO examples E
input: Fields � ′ for new ADT implementation

input: A PCFG G
output: A refactored ADT implementation<� ′

2: W ← {?}
3: M ← ∅
4: whileW ≠ ∅ do
5: % ← SelectBest(W)
6: if IsComplete(%) then
7: if IsConsistent(%, E) then
8: return %

9: � ′≡ ← GetEqFields(%, E)
10: if |� ′≡ | ≥ W × |� | then
11: W ←W ∪ Combine(%,M)
12: M[%] ← � ′≡
13: continue

14: else

15: P ← expand(%,G)
16: W .addAll({% ′ | % ′ ∈ P})

17: return ⊥

Algorithm 5. Inductive Synthesis procedure.

1: procedure Combine(% ,M, � ′≡)

input: A program % that is partially correct

input: A component mapM of programs that

partially satisfy the IO examples

input: A set of �elds � ′≡ that P got correct

across the IO examples

output: A set P of partial programs derived by

combining % with another program inM

2: P ← ∅
3: for all % ′ ∈ Domain(M) do
4: �≡% ′ ←M[%

′]
5: if �≡% ′ ⊄ � ′≡ ∧ �

′
≡ ⊄ �≡% ′ then

6: P ← P ∪Merge(%, % ′)

7: return P

Algorithm 6. Bo�om-up search procedure. Com-
bine generates new partial programs by combining
% with existing components inM. The Merge pro-
cedure used at line 6 is presented as inference rules
in Figure 8.

Next, we turn our attention to the AddToGrammar procedure invoked at line 12 of Algorithm 3
and summarized in Algorithm 4. This algorithm takes as input the current PCFG G along with the
generated code snippets S and produces a new PCFG G′ that includes S. For each code snippet (,
it identi�es the corresponding nonterminal N in G such that N ⇒∗ (in the base grammar (line
4) and adds the new production (N → () to G (line 5) and also recomputes the probabilities of
the productions in G′2 (lines 6 - 10). In particular, for each nonterminal N , it obtains all snippets
'S added for N (line 8), and for each snippet A(, it sets its probability to be (1 − nN)/|'S | (line
9). Hence, all snippets added to the grammar for N have the same probability. Likewise, for all
productions in the base grammar, the algorithm sets their probability to be nN/(|'N | − |'S |). The
parameter nN is a real value in the interval [0, 1] associated with nonterminal N . Intuitively, a
small value of n will bias the search towards programs that use the added snippets.

4.5 Inductive Synthesis Algorithm

In this section, we present our inductive synthesis algorithm for �nding a program that satis�es a
given set of input-output examples. As mentioned earlier, this algorithm leverages the notion of
partial equivalence:

De�nition 4.10 (Partial equivalence). Let<1 and<2 be two di�erent implementations of the
same ADT method for a data representation � ′. We say that<1 and<2 are partially equivalent
modulo �elds � ⊆ � ′, denoted<1 ≡� <2, i�:

∀I .
©­«
<1 (I) = (>A , E) ∧<2 (I) = (>

′
A , E) =⇒

∧
5 ∈�

>A .5 = > ′A .5
ª®¬

(8)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:17

In other words, two implementations are equivalent modulo �elds � if they produce the correct
values for only those �elds. In general, while we could attempt to verify partial equivalence for all
possible inputs, the goal of inductive synthesis is to �nd a program that satis�es a given �nite set
of examples. Hence, when testing partial equivalence as part of the inductive synthesis procedure,
we restrict the domain of I in Equation 8 to only the provided input examples.

Our inductive synthesis algorithm is summarized in Algorithm 5. At a high level, it performs
top-down search over programs in G using the notion of partial equivalence to incorporate bottom-
up synthesis. As is standard in top-down synthesis [Feser et al. 2015; Gulwani et al. 2017], the
algorithm maintains a worklistW of partial programs % where each partial program can be viewed
as a sequence of grammar symbols (both terminals and non-terminals) in G. In each iteration,
the algorithm chooses the “best" partial program % in the work list (line 5), where SelectBest is a
heuristic ranking function that scores programs according to the probability of that partial program
according to the PCFG as well as other factors like size.3 If the dequeued program contains a
non-terminalN (meaning that the call to IsComplete at line 6 returns false), the algorithm expands
N by replacing N with the right-hand-side of all grammar productions of the form N → U and
adds the resulting partial programs to the worklist (lines 14–15). On the other hand, if % is complete
(meaning it contains only terminal symbols), the algorithm checks whether % is consistent with all
examples E (line 7). If so, % is returned as a solution.

The novel part of our inductive synthesis algorithm corresponds to lines 8–12 in Algorithm 5. As
mentioned earlier, this part of the algorithm combines top-down search with bottom-up synthesis
by leveraging the notion of partial equivalence. In particular, line 8 of the algorithm checks whether
% satis�es the input-output examples for some subset of the �elds � ′≡ ⊂ � ′. Speci�cally, for each
�eld 5 ∈ � ′≡, we have % (I).5 = O .5 for each (I,O) ∈ E. Intuitively, if the fraction of such �elds is
above a certain threshold W (line 9), this program is considered a useful building block and added to
a mapM (line 11). Additionally, % is combined with existing building blocks inM via the Combine
procedure (line 10), and all of the resulting programs are added to the worklist.

The Combine procedure is presented in Algorithm 6: given a complete program % and previously
discovered componentsM, it generates new programs by combining % with each % ′ ∈ M via the
Merge procedure. Note that the algorithm only merges % and % ′ if one of them is not strictly better
than the other one (check at line 5 of Algorithm 6).

Finally, Figure 8 formalizes the Merge procedures using inference rules that derive judgments of
the form %1, %2 ⊢ \ , where \ is a set of new partial programs. According to the Seq rule, two code
snippets can be combined sequentially to obtain a larger snippet. The �rst conditional rule, If-1
combines two snippets %1 and %2 by introducing a conditional and yields the partial program if

(??) %1 else %2. The second conditional rule If-2 combines two if statements that share the same
predicate 4 . In particular, it generates a set of new if statements (with the same predicate 4) but
where the true and false branches are obtained by recursively merging the corresponding branches.
The �nal For rule is similar to If-2 but for loops instead of conditionals.

4.6 Properties of Our Refactoring Technique

Assuming a sound Verify procedure, the soundness of our algorithm follows straightforwardly
from the check performed on line 6 of Refactor. Thus, we conclude this section by proving the
completeness of our end-to-end algorithm.

Theorem 4.11 (Completeness). If there is an implementation <� ′ such that <� ′ and <� are

equivalent modulo RRI ∼, then Refactor(<� , �
′,∼,G) returns an<′� ′ such that<′� ′ is equivalent to

<� modulo ∼.

3More implementation details about SelectBest are provided in Section 5.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:18 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

%1, %2 ⊢ {%1; %2}

Seq

%1, %2 ⊢ {if(??) %1 else %2}

If-1

∀8 ∈ [1, 2] . %8 := if(4) % ′8 else %
′′
8

% ′
1
, % ′

2
⊢ \1 % ′′

1
, % ′′

2
⊢ \2

%1, %2 ⊢ {if(4) (1 else (2 | ((1, (2) ∈ \1 × \2}

If-2

∀8 ∈ [1, 2] . %8 := for(v ∈ 4){ (8 }

(1, (2 ⊢ \

%1, %2 ⊢ {for(v ∈ 4){ (} | (∈ \ }
For

Fig. 8. Representative rules describing how we combine code snippets

5 IMPLEMENTATION

We have implemented the ideas presented in this paper as a new tool called Revamp, which takes
three inputs: (1) the original ADT, expressed as a Java class, (2) declaration of the new ADT, and (3)
an RRI expressed as a boolean Java function. Revamp additionally takes a time limit C indicating
the maximum time for refactoring a method. Revamp is written in Java and internally uses JBMC
[Cordeiro et al. 2018] for veri�cation and counterexample generation and the Z3 solver [de Moura
and Bjørner 2008] for determining logical satis�ability. Revamp also uses the Soot framework[Lam
et al. 2011] for identifying methods and variables that are in scope. In the rest of this section, we
describe important optimizations used by Revamp along with other relevant implementation details
omitted from Section 4.
Specifying RRIs As mentioned above, Revamp expects the user to express the intended RRI as a
boolean Java function taking two inputs: an instance of the original ADT and an instance of the
new ADT. In theory, the RRI should relate all the �elds of the original to the �elds of the new to
satisfy equations 6 and 7; however, in practice it can be cumbersome for users to write a complete
RRI since the original ADT may contain several �elds many of which should remain unchanged by
the intended refactoring.
To help users write concise RRIs, Revamp allows them to specify an RRI over the subset of the

new and original ADT �elds relevant to the refactoring task. Before synthesizing the refactored
implementation, Revamp statically analyzes the RRI to identify the relevant �elds from the original
and new implementation. It then attempts to infer a one-to-one correspondence between the
unspeci�ed �elds in the original and new ADTs. Speci�cally, for every unspeci�ed �eld in the
original code, it expects to �nd a corresponding �eld in the new ADT with the same name and
type (and vice-versa). If no such correspondence can be found, it returns an error describing which
unspeci�ed �elds could not be matched.

After �nding such a correspondence, Revamp then constructs an updated RRI asserting that the
values of the unspeci�ed �elds should be equal. The updated RRI looks like the code snippet below
where �elds 51 through 5= are the unspeci�ed ones and ≡ is shorthand for deep equality checks:

static boolean updatedRRI(O o, N n) {

b := o.51 ≡ n.51 && ... && o.5= ≡ n.5=;

return b && origRRI(o, n);

}

Validating RRIs Recall that the correctness of our refactoring technique relies on the fact that the
RRI satis�es equations 6 and 7. To help users check that their RRIs satisfy these equations, Revamp
includes two utilities. First, to check whether equation 6 holds for an RRI AA8 , Revamp encodes
Equation 6 as the following code snippet with assertions:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:19

static void rri_check1 () {

o := nondetOrig ();

n1 := nondetNew (); n2 := nondetNew ();

Verifier.assume(rri(o, n1) && rri(o, n2));

assert(n1 ≡ n2);

}

Here, nondetOrig and nondetNew are Revamp-generated functions that construct arbitrary in-
stances of the new and original ADT. The third line in the function body introduces assume
statements that encode the antecedent of Equation 6. The �nal line checks that the consequent
of Equation 6 holds by asserting that the two instances must be equal. Given such a code snippet,
Revamp utilizes a veri�er (speci�cally, JBMC [Cordeiro et al. 2018]) to check the assertion. If the
veri�er �nds a counterexample, Revamp presents this counterexample to the user to help them �x
the RRI.
Revamp also provides a utility to help users check whether their RRI satis�es Equation 7. In

principle, verifying Equation 7 requires solving a formula with quanti�er alternation (∀∃) which
SMT solvers struggle with. To bypass this problem, Revamp instantiates the universal quanti�er
with several concrete instances A1, . . . , A= of the old ADT and constructs the following code snippet:

static void rri_check2(r1, ..., rn) {

o := r1; n := nondetNew ();

assert(¬rri(o, n));

...

o := rn; n := nondetNew ();

assert(¬rri(o, n));

}

If the RRI satis�es Equation 7, then every assertion in the above code snippet should be violated.
Thus, Revamp uses a model checker to try to construct a counterexample for each of the assertions.

Computing Logical Encodings. Recall from Section 4.3 that Revamp needs to encode loop-free
functions as logical formulas. Given a method< with arguments +̄ , Revamp derives the logical
encoding of this method by computing the weakest precondition of the following code snippet
with respect to True:

A = $.<(+̄)
assert($ ′ ≡ $ ∧ ret ≡ A);

Here,$ ′ is a variable representing the ADT after calling< and A4C is a variable denoting<’s return
value. Thus, the weakest precondition of this code snippet describes the updated ADT instance $ ′

and return value A4C in terms of �elds of the input ADT.
When generating the weakest preconditions, we model most Java constructs in the standard way:

for example, we model references using an array-based encoding that has been popularized by ESC-
Java [Flanagan et al. 2002]. Speci�cally, we introduce an array for each �eld and model loads and
stores using select and update functions in the theory of arrays. However, some language constructs
like bit manipulation and non-linear arithmetic are not solver-friendly, especially for performing
quanti�er-elimination, and so we encode those operations using uninterpreted functions.

Implementation of Verify fromAlgorithm 1. Revamp implements the Verify procedure from Al-
gorithm 1 by encoding the correctness check as a code snippet with assertions/assumptions and
calling a model checker (JBMC). In particular, given a method< from the original ADT, a candidate
refactored implementation<′ of<, and RRI AA8 , Revamp constructs the following code snippet:

static void harness_m () {

o := nondetOrig (); n := nondetNew ();

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:20 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

Verifier.assume(rri(o, n));

E1 := nondet[)1](); ...; E= := nondet[)=]()

A1 := o.m(E1 ,...,E=);

A2 := n.m(E1 ,...,E=);

assert(rri(o, n) && A1 ≡ A2);

}

This code snippet �rst constructs original and new ADT instances > and = that satisfy AA8 . It then
calls the original and refactored implementation with the same (arbitrary) arguments. Finally, it
asserts that the AA8 holds on > and = after the method calls and that the return values are the same.

Logical Abduction. Revamp solves the logical abduction problem presented in Section 4.4 by
performing quanti�er elimination, similar to previous work in solving logical abduction problems
[Albarghouthi et al. 2016; Dillig et al. 2012, 2013]. One detail worth noting is that the formulas in our
setting are in the combined theory of uninterpreted functions, arrays, and integers, and this theory
does not admit quanti�er elimination (i.e., there may not always be an equivalent quanti�er-free
formula). However, we can still approximate quanti�er elimination using the cover [Gulwani and
Musuvathi 2008] operation, which is a generalization of quanti�er elimination. In particular, given
a formula ∃+ .q (+ ,-) where - ∩+ = ∅, the cover of q is a quanti�er free formulak (-) such that

(1) ∃+ .q |= k

(2) For any i (-) such that ∃+ .q |= i we havek |= i .

These conditions are su�cient for solving the logical abduction problem.

Translating Literals into Code Snippets. Recall from Section 4.4 that InferSnippets generates
code snippets by �rst solving a logical abduction problem and then translating each literal in the
solution into code snippets. In the vast majority of cases, the translation is straightforward. In
particular, Revamp translates literals of the form �: ⊕ � 9 where ⊕ is a comparison operator and
�: and � 9 are logical expressions over input variables into their corresponding comparison code
snippets 4: ⊕ 4 9 where 4: and 4 9 are translations of �: and � 9 respectively. Literals of the form$ = �

where$ is an expression solely over output variables is translated into assignments 4$:= 4� where
4$ and 4� are the translations of$ and � . Other literals such as$8 ⊕$ 9 are translated into assertions
like assert(4$8

⊕ 4$ 9
). There are two cases handled separately:

• Literals of the form $.5 = � where 5 is not accessible from the new implementation cannot be
translated into assignments; these require the introduction of function calls. In this case, Revamp
�rst attempts to recursively translate$ and � into expressions �$ and �� . It then uses the SPARK
pointer analysis [Lhoták and Hendren 2003] within Soot to identify all accessible methods< that
may write to 5 . For each<, Revamp constructs a code snippet of the form<(??1, .., ??=) where
??8 indicates an unknown argument.
• Expressions of the form � .5 where 5 is not accessible cannot be directly translated into �eld
dereferences and must be accessed via a method call. In this case, Revamp translates � into
snippets �� and then identi�es all accessible methods< that may read 5 and generates function
expressions with unknown arguments (as in the previous case).

Example 5.1. Consider the following literal that occurs in a formula:

> ′A .map.keys[0] = getComponent(arg1)

where map is a �eld in the new ADT of type Map and keys is a private �eld in the map implemen-
tation. Intuitively, this literal encodes an update to map’s keys. Revamp will recursively generate
the code snippets this.map and arg1.getComponent() and then identify the methods inMap which
can write to keys. Revamp �nds that the only methods that can update the keys are put, remove,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:21

and clear, so it returns the snippets ??1.put(??2, ??3), ??1.remove(??2) and ??1.clear() along with
this.map and arg1.getComponent().

SelectBest. Recall that the inductive synthesis algorithm utilizes a function called SelectBest for
choosing the most promising element in the worklist. Our implementation of SelectBest prioritizes
programs that use the inferred code snippets as well as those that have been obtained by combining
partially equivalent implementations. To prioritize programs that use the inferred snippets, we set
nN to be 0.01 for all nonterminalsN ; this gives all productions that were not added by InferSnippet
a low probability. To prioritize combined partially equivalent programs, Revamp associates each
program % with an integer #% which indicates the number of �elds we expect the program to
update correctly across the IO examples. Whenever Revamp combines programs %1 and %2 that
satisfy �elds � ′

1
and � ′

2
, it associates every resulting combination % with #% = |� ′

1
∪ � ′

2
|. Revamp

then assigns each program the following score:

(2>A4 (%) := "8=(", #%) · %AG (%)

and SelectBest selects the program with the highest score. The extra parameter" is e�ectively an
upper bound on #% that prevents the synthesizer from generating large programs that over�t the
I/O examples. We set" to be 10 in our experimental evaluations.

6 EVALUATION

We evaluated Revamp with the goal of answering the following research questions:

• (RQ1) Usefulness: Can Revamp automate real-world ADT refactoring tasks?
• (RQ2) Comparison to Existing Tools: How does Revamp compare against state-of-the-art Java
synthesizers and large language models such as ChatGPT?
• (RQ3) Ablation: How impactful are Revamp’s key ideas?

Benchmarks. To evaluate Revamp on real-world ADT refactoring tasks, we wrote a GitHub
crawler that looks for candidate Java projects where the data representation has been changed in
between commits. Among the results returned by the crawler, we manually inspected the results
in order of popularity and retained the �rst 30 classes that (a) indeed change the underlying data
representation, and (b) require modifying more than 10 lines of code. Nearly all of our benchmarks
come from widely-used, large projects like Netty [net 2022], Elessandra [ele 2022], Cassandra [cas
2022]. Moreover, the refactorings require changing an average of 50 lines of code and modifying
34% of the ADT methods.

Writing RRIs. To evaluate Revamp on these benchmarks, we had to manually write relational
representation invariants for each benchmark. Before doing so, we �rst tried to understand the
behavior of the benchmark as well as the developer’s intentions when refactoring the data represen-
tation. For the most part, we were able to get a correct understanding of the code base (both original
and new implementations) by examining the di� from the git commit as well as the source code of
the original implementation; however we sometimes (roughly half of the time) also executed some
methods of the original and new ADTs on inputs (1-2) we crafted to con�rm the methods returned
the result (and modi�ed the new ADT �elds) we expected.
After getting a comprehensive mental model of the code base and the developer’s intentions

for the refactoring task, we then wrote the RRI for the benchmark; overall, writing the RRIs took
less than 5 minutes on average. If we had executed the original and new ADT methods during
our examination of the benchmark, we would then utilize those examples (inputs and observed
outputs) to con�rm that the RRI we had written was consistent with them. We also used Revamp’s
RRI checker to validate that properties (6) and (7) held for the RRIs.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:22 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

We recall two cases where we made mistakes writing the RRI and in both cases we ended up
catching the mistakes using the examples and Revamp’s checker. In particular, using examples
helped catch one simple mistake where, in our �rst attempt to write the RRI for the StreamCacheSer-
vice benchmark, we confused two sub�elds of the same type and used one in place of the other in
the RRI. But when we sanity checked the RRI against our examples, the RRI did not hold. Next,
Revamp’s checker found that the RRI we had written for the Zookeeper benchmark violated prop-
erty (6). In that refactoring task, the original ADT had a HashMap m1 and the new ADT had a
HashMap m2 such that every entry in m1 had a corresponding entry in m2 and vice versa. Our
original RRI overlooked the bidirectional relationship and only asserted that every entry in m1 had
a corresponding entry in m2. The checker returned a counterexample where, in one case, the keys
of m2 were a strict superset of the keys in m1, indicating we had missed the reverse check in the
RRI necessary to satisfy (6).

Overall, we estimate that the lead author, the one who wrote the RRIs for the benchmarks, spent
30 minutes per benchmark (15 hours total) including writing and validating the correctness of the
RRI (with less than 5 minutes on average writing the RRI). They had 8.5 years of programming
experience with 5 years of experience writing Java code and 1 year of professional experience in
Java at the time. We further estimate that 80-90% of the author’s time was spent understanding the
behavior of the original ADT and developer-intended refactoring with the remaining time spent
writing and validating the RRIs.

Experimental Setup.All experiments involving Revamp and other Java synthesizers are conducted
on a Google Cloud [gce 2013] e2-standard-8 machine with a Debian 11 OS, 64 GB of RAM, and
128GB of hard disk space. For all experiments, we use a time limit of 15 minutes for refactoring
each ADT method.

6.1 Main Results

To answer our �rst research question, we report the number of ADT methods that Revamp is able to
successfully refactor as well as the time to perform each refactoring. The result of this experiment is
presented in Table 1. The �rst two columns report the GitHub project the benchmark belongs to and
the Java class being refactored. The columns # Old Fields and # New Fields describe the number
of �elds in the original and new data representations that are relevant to the refactoring task. The
next two columns together describe the average size of the initial PCFG across the functions being
refactored and the size of the grammar in the �nal iteration of the CEGIS loop. The di�erence
between the two indicates the number of components Revamp added during synthesis. The next
four columns describe the number of functions in the ADT, the number which required refactoring,
the size of the RRI in LOC, and the overall size of the refactoring measured as a di� between the
original and new ADT implementations. Finally, the last column states the time (in seconds) taken
by Revamp to refactor the entire ADT.
The key takeaway from this experiment is that Revamp is able to successfully refactor 29 out

of 30 benchmarks and 144 out of 146 functions across all the ADTs. For each of the refactored
methods, we also manually inspected the result and veri�ed that the resulting code is equivalent to
the manually refactored version in all but one case, where the programmer written code is actually
buggy (explained in more detail below).

There is one benchmark, namely GeocodingLookupService, that Revamp fails to solve. This ADT
contains three methods that require refactoring, but Revamp fails to synthesize two of these three
methods within the 15 minute time limit.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:23

Table 1. Main experimental results.⊥ indicates time out (> 15minutes). The Cassandra benchmark is wri�en
as Stream[In/Out]Session to indicate that the original refactoring spanned two very similar classes. Rather
than consider them as separate benchmarks, we consider it as one larger task. The columns labeled # Init.
Prods and # Final Prods list the average number of productions in the grammar at the start and by the end of
synthesis respectively. The column labeled “Total Funcs” shows the total number of methods in the class, and
the column labeled “Rel. Funcs” shows the number of relevant methods that require modifications. The Di�
column shows the number of lines in the di� produced by Di�Checker [Di�Checker 2021] and the RRI size
column shows the size of the RRI in LOC. Lastly, the Time column indicates the time taken to refactor the
entire ADT (ignoring verification time).

Project Class
Old # New # Init. # Final Total Rel. RRI

Di� Time
Fields Fields Prods Prods Funcs Funcs Size

bisq-networks MathUtils 1 2 244.3 443.3 7 3 1 11 8.1
cassandra Stream[In/Out]Session 4 4 282.4 371.5 24 12 8.5 66 158.4
elessandra FieldData 1 2 204.8 355.2 6 5 9 39 30.2
elessandra FieldMapper 1 3 266 344.8 10 6 14 55 153.2
elessandra MemoryTranslog 1 3 167.8 305.5 9 5 9 41 43.2
elessandra WeightFunction 2 1 226.5 262.2 2 2 1 24 88.4
falcon CLIParser 1 3 325.2 552.2 8 5 15 55 148.2
falcon EntityProxyUtil 1 2 285.5 388.1 15 6 18 75 234.9

game-of-life EndlessGrid 1 2 215 319.5 14 2 11 7 13.9
glide BitmapTracker 2 1 225.5 335.1 8 6 8 88 283.7

graylog2-server StreamCacheService 1 3 316.4 552.2 9 5 10 45 101.7
guava SingletonImmutableMap 1 2 134.7 197.2 11 6 3 63 181.3
guice StackTraceElements 1 2 324.3 442.1 5 4 15 33 116
hadoop IncrementalBlockReportManager 1 2 337.1 544.2 12 3 13 38 464.1
hbase DataBlockEncoding 2 2 383 499 13 3 14 64 609.9

javaparser Node 1 1 133 168 42 2 3 15 14.5
jdbi Bindings 2 3 253.8 410.7 9 5 14 38 138.8

jenkins-ci GitLabConnectionCon�g 1 1 352 552.2 11 5 9 43 101
jmist Box2 3 4 197.1 233.3 12 12 5 104 257
junit BlockJunit4ClassRunner 1 2 233.8 462.9 8 5 17 50 868.2
netty DefaultChannelPipeline 3 4 586.3 733.3 64 6 16 45 86.6
netty SpdySession 1 3 270.2 366.2 24 5 9 63 192.6

osmand GeocodingLookupService 1 2 391.3 662.9 14 3 11 33 ⊥
pixeldungeon Level 1 9 397.8 588.8 12 3 17 85 988.8

pravega StreamSegmentContainerMetadata 1 3 532.5 882.2 13 6 13 54 118
wicket AsynchronousPageStore 1 2 319.5 488.3 7 4 9 22 275.7
wicket RequestAdapter 1 2 188 255.2 9 3 8 21 77.8
wicket TagIdenti�er 1 1 260.7 387 10 3 7 72 117
Xodus PersistentSequentialDictionary 1 2 263.3 355.2 13 7 13 68 875.5

Zookeeper NettyServerCnxnFactory 1 1 171.3 299.3 25 4 9 37 146
Averages - 1.4 2.5 282.9 425.3 14.2 4.9 9.8 48.8 237.7

Case Study: AsynchronousPageStore. One of our benchmarks, namely the AsynchronousPage-
Store class from the Wicket project[wic 2023], is an interesting case study because the manually-
performed refactoring introduces a subtle bug. The original version of this class maintains a queue
of PendingAdd tasks where each task has a unique identi�er called a key. The new data represen-
tation includes an additional hash map called map which tracks each task in the queue by its key.
Hence, whenever a task is added or removed from the queue, map also needs to be suitably updated.
However, the manual re-implementation of the run method fails to correctly update map in an edge
case where an auxiliary procedure called by run throws an exception. This refactoring created a
memory leak because some entries from the HashMap would never get removed in the exception
cases. On the other hand, the new implementation synthesized by Revamp handles this edge case
correctly and �xes the memory leak in the manual refactoring.

Result 1: Revamp is able to refactor the entire ADT for 97% of the classes and synthesize 99%
of all method implementations. Furthermore, the automatic refactoring performed by Revamp

does not contain a subtle bug introduced when manually refactoring one of the benchmarks.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:24 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

Table 2. Comparison between Revamp and baseline tools including JSketch, Volt, and ChatGPT. The column
Synth Time describes the average time taken by the tool in seconds when it succesfully refactors a method.

Tool # Bench. Solved # Funcs Refactored Synth Time (s)

JSketch 4/30 (13%) 44/146 (30%) 168.3
Volt 8/30 (27%) 83/146 (57%) 132.4

ChatGPT 7/30 (23%) 92/146 (63%) -
Revamp 29/30 (97%) 144/146 (99%) 42.83

6.2 Comparison against Baseline Tools

To answer our second research question, we compared Revamp against two relevant baselines.
While there is no existing technique that directly addresses our problem, we adapted three tools to
our setting:

• JSketch: Our �rst baseline is JSketch [Jeon et al. 2015], a generic synthesis framework that is
an adaptation of Sketch [Solar-Lezama et al. 2006] to synthesis tasks in Java. To use JSketch,
we �rst manually created harnesses for all 146 methods that required refactoring. Speci�cally,
for every method Revamp was able to refactor, we supplied the I/O examples generated by
Revamp as test cases for JSketch. For methods that Revamp failed to refactor, we supplied test
cases manually. Subsequently, we used the initial grammar from Revamp and constructed a
corresponding JSketch generator for each nonterminal in our grammar (statement generator,
expression generator, etc.). Moreover, for each method in the original ADT requiring refactoring,
we wrote the corresponding declaration in the new ADT and populated the method’s body with
a call to the statement generator. Finally, once JSketch produced a program consistent with all
examples, we used JBMC to verify its correctness.
• Volt: Our second baseline is Volt [Pailoor et al. 2021], a state-of-the-art CEGIS-based synthesizer
for Java. While Volt primarily targets data structure re�nements, its underlying synthesis algo-
rithm is fairly general and performs enumerative search with SMT-based pruning. As such, we
replaced our method refactoring procedure with Volt’s synthesis algorithm.
• ChatGPT: Our third baseline is ChatGPT [OpenAI 2021]4, a state-of-the-art large language
model (LLM), which has shown pro�ciency at many coding tasks including code synthesis. To use
ChatGPT, we provided it the original ADT implementation, the declaration of the new ADT, the
RRI and asked it the following: "For every method in [the original ADT] generate an equivalent
method in [the new ADT] that preserves [RRI function]". We then compiled the generated code,
and for cases where compilation was successful, we also attempted to verify equivalence using
JBMC.

Results. The results of this comparison are summarized in Table 2. Here, the column labeled “#
Bench. Solved” shows how many of the 30 ADTs were correctly refactored by each tool. Note that
we consider a benchmark to be “solved” if the tool is able to correctly refactor all ADT methods
that require refactoring. To give a more �ne-grained view of the results, the next column labeled
“# Funcs Refactored” shows the number of ADT methods that were correctly refactored. Finally,
the last column labeled “Synth Time” provides the average running time of each tool across all
successfully refactored methods in seconds.
The �rst observation about Table 2 is that the other baselines solve less than a third of the

benchmarks solved by Revamp. In particular, JSketch can only solve 4 out of 30 benchmarks and

4We evaluated on the May 26, 2023 version of the web application using GPT 3.5

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:25

Table 3. Synthetic tasks to evaluate how well ChatGPT performs on unseen benchmarks

Name # Funcs # Solved (ChatGPT) # Solved (Revamp)

Counters 2 1 2

Mercury Timekeeping 2 0 2

Point Summation 2 0 2

Piecewise Function 2 1 2

Incremental Average 2 0 2

correctly refactors only 44 out of the 146 methods. Volt solves 8 of the benchmarks and correctly
refactors 83 methods, more than twice the number of methods as JSketch but 60 less than Revamp.
ChatGPT, on the other hand, is able to completely solve 7 benchmarks and refactors 92 of the
functions, the most among the three baselines. However, upon closer inspection, we found that,
in many cases, the ChatGPT result matches the human-refactored version on GitHub verbatim,
including the same helper functions and local variables names. When we attempted to change
the variable and �eld names slightly, ChatGPT ignored these changes and simply regenerated
the (incorrect) version found on GitHub in some cases. These results indicate that there is cross-
contamination between training and test data, as ChatGPT has likely been trained on the same
GitHub benchmarks.

ChatGPT’s Performance on Unseen Benchmarks. To alleviate these concerns about ChatGPT,
we performed another experiment on �ve manually-crafted ADT refactoring tasks described below:

• Counters: The original ADT consists of a single �eld called map which maps integers to integers.
It consists of two methods add and remove which inserts a tuple and removes an entry from the
map respectively. The refactored ADT has two additional �elds evens and odds which track the
number of odd and even keys in map. The refactored implementation needs to change add and
remove to update evens and odds correctly.
• Mercury Timekeeping: The original ADT consists of a single �eld ts which tracks the number
of seconds elapsed. It consists of two methods set and add_s which sets and increments the
timer. The refactored ADT expresses the time elapsed in terms of years, days, hours, minutes
and seconds; however the years and days units are in terms of Mercury years and days.
• Point Sum: The original ADT consists of two integer �elds x and y representing a 2D point and
two methods moveY and moveX, both of which take an integer argument v and increase x and y

by v respectively. The new ADT consists of two integer �elds sum and diff and the RRI speci�es
that sum = y + x and diff = y − x.
• Piecewise: The original ADT implementation consists of an integer �eld x and the new im-
plementation has an integer �eld y and the RRI speci�es that y = 5 (x) where 5 is a piecewise
linear function. The original implementation consists of two methods: piecewise and add. The
former expresses another piecewise linear function 6(G) and the latter takes as input an integer
parameter v and increments x by v.
• Incremental Average: The original ADT consists of a List of integers called vs and contains
two methods set and add which appends a list of elements to vs and adds an element v to vs.
The new implementation contains an integer �eld called avg, and the RRI speci�es that avg
should equal the (rounded-down) average of the elements in vs.

We provide the code of these benchmarks along with our interaction with ChatGPT in the supple-
mentary material.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:26 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

0 20 40 60 80 100 120 140

0

0.5

1

1.5
·104

Methods Successfully Refactored

C
u
m
u
la
ti
v
e
T
im

e
(s
)

Revamp Revamp-NoPartial Revamp-NoInfer Revamp-NoIO-RRI

Fig. 9. Ablation results.

The results of this experiment are presented in Table 3. For this benchmark set, ChatGPT was
not able to solve any of the benchmarks and could correctly refactor only 2 out of the 10 methods.
In contrast, Revamp is able to correctly refactor all benchmarks. Upon closer inspection of these
results, we observe that ChatGPT struggles to reason about edge cases. For example, in the Counters
task, it correctly increments the counters in the remove method but incorrectly increments them in
add because of an edge case (namely, when the key is already in the map).

Result 2: Revamp is able to solve more than 3x the number of the benchmarks and refactor 62
more functions than the next closest baselines.

6.3 Ablation Study

In this section, we present the results of an ablation study that is designed to assess the relative
impact of our key ideas. In particular, we consider three variants of Revamp:

• Revamp-NoIO-RRI is a variant of Revamp that does not infer relational IO examples given a
counterexample to equivalence. It instead requires the output of the inductive synthesizer to
satisfy the RRI. This variant also cannot infer code snippets using abductive reasoning, as that
procedure relies on input-output examples but will combine programs as long as they satisfy the
RRI on a subset of the inputs.
• Revamp-NoInfer is a variant that is identical to Revamp except it does not infer additional code
snippets using abductive reasoning. It still constructs IO examples and uses partial equivalence
to combine programs during synthesis.
• Revamp-NoPartial only di�ers from Revamp in that it does not use partial equivalence to
determine if code snippets should be combined. Instead, it only combines code snippets that
completely satisfy an IO example.

The results of this ablation study are presented in Figure 9. Compared to Revamp-NoIO-RRI,
and Revamp-NoInfer, Revamp is able to successfully refactor nearly 80 more methods. Finally,
Revamp is able to refactor 16 more methods than Revamp-NoInfer, and among the benchmarks
that Revamp-NoPartial can solve, Revamp does so nearly 4.2× faster.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:27

Result 3: Each of our three key ideas outlined in Section 2 have a signi�cant impact on
Revamp’s performance.

7 RELATED WORK

Data structure veri�cation and synthesis. There is a line of work on verifying, repairing, and
synthesizing data structure implementations. Demsky and Rinard [Demsky and Rinard 2003a,b,
2005] study runtime error detection and repair of data structures based on boolean constraints, and
Lam et al. [Lam et al. 2005a,b] perform static analysis to verify data structure consistency. More
recently, there has been a line of work to synthesize data structure methods via deductive synthesis
[Delaware et al. 2015; Hawkins et al. 2011, 2012a,b; Itzhaky et al. 2021; Qiu and Solar-Lezama 2017].
Fiat [Delaware et al. 2015] performs deductive synthesis to generate SQL-like query and insertion
operations through steps of re�nement. RelC [Hawkins et al. 2011, 2012a,b] views a data represen-
tation as a set of primitive data structures (e.g., List, Set, Map) and synthesizes operations from a
relational algebra description and functional dependencies. Similarly, Cozy [Loncaric et al. 2018,
2016] synthesizes e�cient implementations of complex collection data structures from high-level
speci�cations. By contrast, Revamp does not restrict ADT implementations to only use primitive
data structures. Furthermore, Revamp focuses on refactoring existing ADT implementations in-
stead of synthesizing an implementation from a high-level description. Among this line of work,
Volt [Pailoor et al. 2021] is the most closely related to Revamp. In particular, given a data structure,
a new set of auxiliary �elds, and an integrity constraint, Volt can automatically re�ne the data
structure in a way that satis�es the speci�ed integrity constraint. However, Revamp studies a more
general semantic code refactoring problem for ADTs, where the relationship between two versions
of ADTs are speci�ed using relational representation invariants. In particular, Volt is designed to
only synthesize updates to existing code whereas Revamp handles a broader class of refactorings
which can include updates, reads, additions, and deletions of an ADT implementation.

Quanti�er elimination in synthesis. Recall that Revamp uses quanti�er elimination to solve
the logical abduction problem introduced in Section 4.4. However, we note that Revamp is not the
�rst work to use quanti�er elimination in the context of program synthesis. Comfusy [Kuncak
et al. 2010a,b, 2012] and AE-VAL [Fedyukovich et al. 2019] apply quanti�er-elimination within
a deductive synthesizer to incrementally rewrite a logical speci�cation over integer and rational
arithmetic into straight-line code. Unlike Revamp, both procedures are fully deductive and operate
on a restricted language expressing loop-free arithmetic code. As such, these techniques are not
directly applicable in our setting. Unlike these approaches, Revamp uses quanti�er elimination
within a CEGIS-loop to learn new snippets that will be useful for synthesis from previous failed
attempts.

Constraint-based program synthesis. Constraint-based program synthesis has been studied
extensively and applied to many scenarios, such as writing bit-manipulating programs [Gulwani
and Venkatesan 2009; Jha et al. 2010] and generating Datalog programs [Albarghouthi et al. 2017] for
program analysis. Several frameworks are developed for general constraint-based program synthesis,
including Sketch [Solar-Lezama et al. 2008, 2006], JSketch [Jeon et al. 2015], Rosette [Torlak and
Bodík 2014], and CVC5 [Barbosa et al. 2022]. Revamp does not reduce the ADT code refactoring
problem into a constraint-solving problem directly. Instead, Revamp learns new code snippets to be
used in synthesis by solving a logical abduction problem.

Relational program synthesis. Revamp is also related to a line of work [Hu and D’Antoni
2017; Miltner et al. 2018, 2019; Srivastava et al. 2011; Wang et al. 2018] on relational program
synthesis, where the goal is to synthesize programs based on relational speci�cations that relate

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

28:28 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

multiple programs or multiple runs of a program. For example, Relish [Wang et al. 2018] leverages
hierarchical �nite tree automata to synthesize comparators, string encoders and decoders. Genic [Hu
and D’Antoni 2017] and PINS [Srivastava et al. 2011] study the program inversion problem [Dijkstra
1978] using symbolic extended �nite transducers and path-based inductive synthesis, respectively.
At a high level, Revamp can be viewed as solving a new relational program synthesis problem
speci�ed by the relational representation invariant between two ADTs. As discussed in Section 1,
the synthesis problem is challenging for existing techniques due to the complexity of the new data
representation and the large search space of the new ADT implementation. Revamp makes the
synthesis feasible by using symbolic reasoning to identifying code snippets likely to be used by the
refactored implementation and a notion of partial equivalence to quickly combine code snippets
into larger programs.

Strengthening speci�cations in synthesis. There is a line of related work which also strengthens
speci�cations during synthesis by generating I/O examples. In particular, Toshokan [Huang and
Qiu 2022] is a synthesis framework for Java that allows users to synthesize code involving library
functions without providing models or axioms for the libraries. Instead, Toshokan iteratively builds
a model of the library on-the-�y by running the actual library function on the counterexample
inputs generated in each iteration of its CEGIS loop to recover speci�c input-output examples.
Like Toshokan, JDial [Hu et al. 2019] also iteratively strengthens models of external functions by
executing the concrete library function on unseen inputs during synthesis. However, both of these
approaches are speci�c to strengthening the models of external functions and so cannot be used to
strengthen the overall synthesis speci�cation in our setting.

Automatic program refactoring. Another line of work related to Revamp is automatic program
refactoring [Altidor and Smaragdakis 2014; Ge et al. 2012; Kataoka et al. 2001; Tip et al. 2011;
Wang et al. 2020; Yaghmazadeh et al. 2018]. Given that the refactoring process can be tedious,
sub-optimal, and error-prone, researchers have studied automatic refactoring approaches in vari-
ous scenarios, such as optimizing database applications [Cheung et al. 2013], evolving database
schemas [Wang et al. 2019, 2020; Yaghmazadeh et al. 2018], and improving gas e�ciency of smart
contracts [Chen et al. 2022]. To facilitate automatic refactoring, prior work has leveraged di�erent
kinds of speci�cations, including invariants [Kataoka et al. 2001], type constraints [Tip et al. 2011],
inner-class equivalence predicates [Samak et al. 2019], and integrity constraints [Pailoor et al. 2021].
Unlike prior work, Revamp introduces a new way to specify ADT refactorings using relational
representation invariants and uses the RRIs to construct I/O examples for each method.

8 CONCLUSION

We introduced the semantic ADT refactoring problem, which requires generating a new imple-
mentation of an ADT for a new data representation. We also introduced a novel technique, based
on inductive synthesis, for solving this problem. Our algorithm takes as input the old ADT imple-
mentation, a new data representation, and a relational representation invariant and automatically
synthesizes the new implementation of each ADT method.

We have implemented our ideas as a new tool called Revamp for refactoring Java classes given a
suitable relational representation invariant expressed as a boolean function. We evaluated Revamp

on 30 ADT refactoring tasks that collectively require refactoring over 140 methods. Revamp is able
to successfully refactor 97% of the benchmarks (i.e., classes) and 99% of the method implementations.
Furthermore, while the manual refactoring introduces a subtle bug in one of the benchmarks, the
Revamp-synthesized implementation does not su�er from this problem. We also compared Revamp

against several baselines (JSketch, Volt, and ChatGPT) and showed that they are far inferior to
Revamp in terms of the percentage of classes/methods they can correctly refactor. Finally, we

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

Semantic Code Refactoring for Abstract Data Types 28:29

also presented several ablation studies and demonstrated that the three key ideas underlying our
approach are all important for its real-world practicality.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Xiaokang Qiu for their thoughtful and
constructive feedback. This material is based upon work partially supported by National Science
Foundation under Grant Nos. CCF-1762299 and CCF-1918889. Any opinions, �ndings, and conclu-
sions or recommendations expressed in this material are those of the author and do not necessarily
re�ect the views of the funding sources.

REFERENCES

2003. bind8 negative cache poison attack. https://vulners.com/freebsd/F04CC5CB-2D0B-11D8-BEAF-000A95C4D922.

2005. CVE-2005-0034. https://nvd.nist.gov/vuln/detail/CVE-2005-0034.

2009. Linux devs exterminate security bugs from kernel. https://www.theregister.com/2009/12/11/linux_kernel_bugs_

patched/.

2013. Google Cloud Platform (GCP). https://cloud.google.com/.

2022. Cassandra. https://github.com/apache/cassandra.

2022. Elessandra. https://github.com/strapdata/elassandra.

2022. How refactoring code in Safari’s WebKit resurrected ‘zombie’ security bug. https://www.theregister.com/2022/06/21/

apple-safari-zombie-exploit/.

2022. Netty. https://github.com/netty/netty.

2023. Glide. https://github.com/bumptech/glide.

2023. Wicket. https://github.com/apache/wicket.

Aws Albarghouthi, Isil Dillig, and Arie Gur�nkel. 2016. Maximal Speci�cation Synthesis. SIGPLAN Not. 51, 1 (jan 2016),

789–801. https://doi.org/10.1145/2914770.2837628

Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. 2017. Constraint-Based Synthesis of Datalog Programs.

In Principles and Practice of Constraint Programming - 23rd International Conference (CP) (Lecture Notes in Computer

Science, Vol. 10416). Springer, 689–706. https://doi.org/10.1007/978-3-319-66158-2_44

John Altidor and Yannis Smaragdakis. 2014. Refactoring Java generics by inferring wildcards, in practice. In Proceedings of

the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA).

ACM, 271–290. https://doi.org/10.1145/2660193.2660203

Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. 2015. Synthesis through Uni�cation. CoRR abs/1505.05868 (2015).

arXiv:1505.05868 http://arxiv.org/abs/1505.05868

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,

Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for

the Construction and Analysis of Systems - 28th International Conference (TACAS) (Lecture Notes in Computer Science,

Vol. 13243). Springer, 415–442. https://doi.org/10.1007/978-3-030-99524-9_24

Yanju Chen, Yuepeng Wang, Maruth Goyal, James Dong, Yu Feng, and Isil Dillig. 2022. Synthesis-Powered Optimization of

Smart Contracts via Data Type Refactoring. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 145:1–145:29.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications with query

synthesis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, (PLDI). ACM, 3–14.

https://doi.org/10.1145/2491956.2462180

Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek Trtik. 2018. JBMC: A bounded model checking

tool for verifying Java bytecode. In International Conference on Computer Aided Veri�cation. Springer, 183–190.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An E�cient SMT Solver. In The 14th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) (Lecture Notes in Computer Science, Vol. 4963).

Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of Abstract

Data Types in a Proof Assistant. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL). ACM, 689–700. https://doi.org/10.1145/2676726.2677006

Brian Demsky and Martin C. Rinard. 2003a. Automatic detection and repair of errors in data structures. In Proceedings of the

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). ACM, 78–95.

https://doi.org/10.1145/949305.949314

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

https://vulners.com/freebsd/F04CC5CB-2D0B-11D8-BEAF-000A95C4D922
https://nvd.nist.gov/vuln/detail/CVE-2005-0034
https://www.theregister.com/2009/12/11/linux_kernel_bugs_patched/
https://www.theregister.com/2009/12/11/linux_kernel_bugs_patched/
https://cloud.google.com/
https://github.com/apache/cassandra
https://github.com/strapdata/elassandra
https://www.theregister.com/2022/06/21/apple-safari-zombie-exploit/
https://www.theregister.com/2022/06/21/apple-safari-zombie-exploit/
https://github.com/netty/netty
https://github.com/bumptech/glide
https://github.com/apache/wicket
https://doi.org/10.1145/2914770.2837628
https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.1145/2660193.2660203
https://arxiv.org/abs/1505.05868
http://arxiv.org/abs/1505.05868
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/949305.949314

28:30 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

Brian Demsky and Martin C. Rinard. 2003b. Static Speci�cation Analysis for Termination of Speci�cation-Based Data

Structure Repair. In 14th International Symposium on Software Reliability Engineering (ISSRE). IEEE Computer Society,

71–84. https://doi.org/10.1109/ISSRE.2003.1251032

Brian Demsky and Martin C. Rinard. 2005. Data structure repair using goal-directed reasoning. In 27th International

Conference on Software Engineering (ICSE). ACM, 176–185. https://doi.org/10.1145/1062455.1062499

Di�Checker. 2021. Di�Checker. https://www.di�checker.com/

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18, 8

(aug 1975), 453–457. https://doi.org/10.1145/360933.360975

Edsger W. Dijkstra. 1978. Program Inversion. In Program Construction, International Summer School, July 26 - August 6, 1978,

Marktoberdorf, Germany (Lecture Notes in Computer Science, Vol. 69). Springer, 54–57. https://doi.org/10.1007/BFb0014657

Isil Dillig and Thomas Dillig. 2013. Explain: A Tool for Performing Abductive Inference. In Computer Aided Veri�cation,

Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 684–689.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated error diagnosis using abductive inference. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). ACM, 181–192. https://doi.org/10.1145/2254064.

2254087

Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive inference.

In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA). ACM, 443–456. https://doi.org/10.1145/2509136.2509511

Grigory Fedyukovich, Arie Gur�nkel, and Aarti Gupta. 2019. Lazy but E�ective Functional Synthesis. In Veri�cation, Model

Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019,

Proceedings (Lecture Notes in Computer Science, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.). Springer, 92–113.

https://doi.org/10.1007/978-3-030-11245-5_5

John Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. ACM SIGPLAN Notices 50 (06 2015), 229–239. https://doi.org/10.1145/2813885.2737977

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended

Static Checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and

Implementation (Berlin, Germany) (PLDI ’02). Association for Computing Machinery, New York, NY, USA, 234–245.

https://doi.org/10.1145/512529.512558

Xi Ge, Quinton L. DuBose, and Emerson R. Murphy-Hill. 2012. Reconciling manual and automatic refactoring. In 34th

International Conference on Software Engineering (ICSE). IEEE Computer Society, 211–221. https://doi.org/10.1109/ICSE.

2012.6227192

Sumit Gulwani and Madan Musuvathi. 2008. Cover Algorithms and Their Combination. In Proceedings of the Theory

and Practice of Software, 17th European Conference on Programming Languages and Systems (Budapest, Hungary)

(ESOP’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 193–207.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Enumerative Search. Now Publishers Inc., 57–64.

Sumit Gulwani and Ramarathnam Venkatesan. 2009. Component Based Synthesis Applied to Bitvector Circuits. Technical

Report MSR-TR-2010-12. https://www.microsoft.com/en-us/research/publication/component-based-synthesis-applied-

to-bitvector-circuits/

John V. Guttag, Ellis Horowitz, and David R. Musser. 1978. Abstract Data Types and Software Validation. Commun. ACM 21,

12 (dec 1978), 1048–1064. https://doi.org/10.1145/359657.359666

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv. 2011. Data representation synthesis. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,

38–49. https://doi.org/10.1145/1993498.1993504

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv. 2012a. Concurrent data representation

synthesis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, (PLDI). ACM, 417–428.

https://doi.org/10.1145/2254064.2254114

Peter Hawkins, Martin C. Rinard, Alex Aiken, Mooly Sagiv, and Kathleen Fisher. 2012b. An introduction to data representation

synthesis. Commun. ACM 55, 12 (2012), 91–99. https://doi.org/10.1145/2380656.2380677

Qinheping Hu and Loris D’Antoni. 2017. Automatic program inversion using symbolic transducers. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 376–389. https:

//doi.org/10.1145/3062341.3062345

Qinheping Hu, Roopsha Samanta, Rishabh Singh, and Loris D’Antoni. 2019. Direct Manipulation for Imperative Programs. In

Static Analysis: 26th International Symposium, SAS 2019, Porto, Portugal, October 8–11, 2019, Proceedings (Porto, Portugal).

Springer-Verlag, Berlin, Heidelberg, 347–367. https://doi.org/10.1007/978-3-030-32304-2_17

Kangjing Huang and Xiaokang Qiu. 2022. Bootstrapping Library-Based Synthesis. In Static Analysis: 29th International

Symposium, SAS 2022, Auckland, New Zealand, December 5–7, 2022, Proceedings (Auckland, New Zealand). Springer-Verlag,

Berlin, Heidelberg, 272–298. https://doi.org/10.1007/978-3-031-22308-2_13

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

https://doi.org/10.1109/ISSRE.2003.1251032
https://doi.org/10.1145/1062455.1062499
https://www.diffchecker.com/
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/BFb0014657
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1007/978-3-030-11245-5_5
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/512529.512558
https://doi.org/10.1109/ICSE.2012.6227192
https://doi.org/10.1109/ICSE.2012.6227192
https://www.microsoft.com/en-us/research/publication/component-based-synthesis-applied-to-bitvector-circuits/
https://www.microsoft.com/en-us/research/publication/component-based-synthesis-applied-to-bitvector-circuits/
https://doi.org/10.1145/359657.359666
https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1145/2254064.2254114
https://doi.org/10.1145/2380656.2380677
https://doi.org/10.1145/3062341.3062345
https://doi.org/10.1145/3062341.3062345
https://doi.org/10.1007/978-3-030-32304-2_17
https://doi.org/10.1007/978-3-031-22308-2_13

Semantic Code Refactoring for Abstract Data Types 28:31

Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey. 2021. Cyclic Program Synthesis. In

Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(Virtual, Canada) (PLDI 2021). Association for Computing Machinery, 944–959. https://doi.org/10.1145/3453483.3454087

Jinseong Jeon, Xiaokang Qiu, Je�rey S. Foster, and Armando Solar-Lezama. 2015. JSketch: sketching for Java. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 934–937. https://doi.org/10.1145/

2786805.2803189

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (ICSE). ACM, 215–224. https:

//doi.org/10.1145/1806799.1806833

Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin. 2001. Automated Support for Program Refactoring

Using Invariants. In International Conference on Software Maintenance (ICSM). IEEE Computer Society, 736–743. https:

//doi.org/10.1109/ICSM.2001.972794

Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010a. Comfusy: A Tool for Complete Functional Synthesis.

In Computer Aided Veri�cation, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 430–433.

Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010b. Complete Functional Synthesis. In Proceedings of

the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’10). Association for

Computing Machinery, New York, NY, USA, 316–329. https://doi.org/10.1145/1806596.1806632

Viktor Kuncak, Mikael Mayer, Ruzica Piskac, and Philippe Suter. 2012. Software Synthesis Procedures. Commun. ACM 55

(02 2012), 103–111. https://doi.org/10.1145/2076450.2076472

Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot framework for Java program analysis: a

retrospective.

Patrick Lam, Viktor Kuncak, and Martin C. Rinard. 2005a. Generalized Typestate Checking for Data Structure Consistency. In

Veri�cation, Model Checking, and Abstract Interpretation, 6th International Conference (VMCAI) (Lecture Notes in Computer

Science, Vol. 3385). Springer, 430–447. https://doi.org/10.1007/978-3-540-30579-8_28

Patrick Lam, Viktor Kuncak, and Martin C. Rinard. 2005b. Hob: A Tool for Verifying Data Structure Consistency. In

Prcoeedings of the 14th International Conference on Compiler Construction (CC) (Lecture Notes in Computer Science,

Vol. 3443). Springer, 237–241. https://doi.org/10.1007/978-3-540-31985-6_16

Woosuk Lee. 2021. Combining the Top-down Propagation and Bottom-up Enumeration for Inductive Program Synthesis.

Proc. ACM Program. Lang. 5, POPL, Article 54 (jan 2021), 28 pages. https://doi.org/10.1145/3434335

Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using S park. In International Conference on

Compiler Construction. Springer, 153–169.

Calvin Loncaric, Michael D. Ernst, and Emina Torlak. 2018. Generalized data structure synthesis. In Proceedings of the 40th

International Conference on Software Engineering (ICSE). ACM, 958–968. https://doi.org/10.1145/3180155.3180211

Calvin Loncaric, Emina Torlak, and Michael D. Ernst. 2016. Fast synthesis of fast collections. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 355–368. https://doi.org/10.

1145/2908080.2908122

Anders Miltner, Kathleen Fisher, Benjamin C. Pierce, David Walker, and Steve Zdancewic. 2018. Synthesizing bijective

lenses. Proc. ACM Program. Lang. 2, POPL (2018), 1:1–1:30. https://doi.org/10.1145/3158089

Anders Miltner, SolomonMaina, Kathleen Fisher, Benjamin C. Pierce, DavidWalker, and Steve Zdancewic. 2019. Synthesizing

symmetric lenses. Proc. ACM Program. Lang. 3, ICFP (2019), 95:1–95:28. https://doi.org/10.1145/3341699

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK)

(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3385412.3385967

OpenAI. 2021. ChatGPT. https://openai.com

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2021. Synthesizing Data Structure Re�nements from Integrity

Constraints. Association for Computing Machinery, New York, NY, USA, 574–587. https://doi.org/10.1145/3453483.

3454063

Xiaokang Qiu and Armando Solar-Lezama. 2017. Natural Synthesis of Provably-Correct Data-Structure Manipulations.

Proc. ACM Program. Lang. 1, OOPSLA, Article 65 (oct 2017), 28 pages. https://doi.org/10.1145/3133889

Malavika Samak, Deokhwan Kim, and Martin C. Rinard. 2019. Synthesizing Replacement Classes. Proc. ACM Program. Lang.

4, POPL, Article 52 (dec 2019), 33 pages. https://doi.org/10.1145/3371120

Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel: component-based synthesis with control structures. Proc.

ACM Program. Lang. 3, POPL (2019), 73:1–73:29. https://doi.org/10.1145/3290386

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. 2008. Sketching concurrent data structures. In

Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation (PLDI). ACM,

136–148. https://doi.org/10.1145/1375581.1375599

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/2786805.2803189
https://doi.org/10.1145/2786805.2803189
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1109/ICSM.2001.972794
https://doi.org/10.1109/ICSM.2001.972794
https://doi.org/10.1145/1806596.1806632
https://doi.org/10.1145/2076450.2076472
https://doi.org/10.1007/978-3-540-30579-8_28
https://doi.org/10.1007/978-3-540-31985-6_16
https://doi.org/10.1145/3434335
https://doi.org/10.1145/3180155.3180211
https://doi.org/10.1145/2908080.2908122
https://doi.org/10.1145/2908080.2908122
https://doi.org/10.1145/3158089
https://doi.org/10.1145/3341699
https://doi.org/10.1145/3385412.3385967
https://openai.com
https://doi.org/10.1145/3453483.3454063
https://doi.org/10.1145/3453483.3454063
https://doi.org/10.1145/3133889
https://doi.org/10.1145/3371120
https://doi.org/10.1145/3290386
https://doi.org/10.1145/1375581.1375599

28:32 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal Ebcioglu. 2005. Programming by sketching for

bit-streaming programs. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and

Implementation, Chicago, IL, USA, June 12-15, 2005, Vivek Sarkar and Mary W. Hall (Eds.). ACM, 281–294. https:

//doi.org/10.1145/1065010.1065045

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for �nite programs. In Proceedings of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). ACM, 404–415. https://doi.org/10.1145/1168857.1168907

Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Je�rey S. Foster. 2011. Path-based inductive synthesis for program

inversion. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). ACM, 492–503. https://doi.org/10.1145/1993498.1993557

Frank Tip, Robert M. Fuhrer, Adam Kiezun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter. 2011. Refactoring using

type constraints. ACM Trans. Program. Lang. Syst. 33, 3 (2011), 9:1–9:47. https://doi.org/10.1145/1961204.1961205

Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 530–541. https://doi.org/10.

1145/2594291.2594340

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing database programs for schema refactoring. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,

286–300. https://doi.org/10.1145/3314221.3314588

YuepengWang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data Migration Using Datalog Program Synthesis.

Proc. VLDB Endow. 13, 7 (mar 2020), 1006–1019. https://doi.org/10.14778/3384345.3384350

Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. Relational program synthesis. Proc. ACM Program. Lang. 2, OOPSLA

(2018), 155:1–155:27. https://doi.org/10.1145/3276525

Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated Migration of Hierarchical Data to Relational Tables

Using Programming-by-Example. Proc. VLDB Endow. 11, 5 (jan 2018), 580–593. https://doi.org/10.1145/3187009.3177735

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.

https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.14778/3384345.3384350
https://doi.org/10.1145/3276525
https://doi.org/10.1145/3187009.3177735

	Abstract
	1 Introduction
	2 Overview
	3 Problem Statement
	4 ADT Refactoring Algorithm
	4.1 Preliminaries
	4.2 Top-Level Procedure
	4.3 Specification Strengthening
	4.4 Inferring Code Snippets
	4.5 Inductive Synthesis Algorithm
	4.6 Properties of Our Refactoring Technique

	5 Implementation
	6 Evaluation
	6.1 Main Results
	6.2 Comparison against Baseline Tools
	6.3 Ablation Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

