Automatic Repair for Network Programs

Lei Shi'™, Yuepeng Wang?, Rajeev Alur!, and Boon Thau Loo!

1 University of Pennsylvania, Philadelphia, USA
2 Simon Fraser University, Burnaby, Canada
{shilei,alur,boonloo}@seas.upenn.edu yuepeng@sfu.ca

Abstract. Debugging imperative network programs is a difficult task
for operators as it requires understanding various network modules and
complicated data structures. For this purpose, this paper presents an au-
tomated technique for repairing network programs with respect to unit
tests. Given as input a faulty network program and a set of unit tests,
our approach localizes the fault through symbolic reasoning, and synthe-
sizes a patch ensuring that the repaired program passes all unit tests. It
applies domain-specific abstraction to simplify network data structures
and exploits function summary reuse for modular symbolic analysis. We
have implemented the proposed techniques in a tool called NETREP and
evaluated it on 10 benchmarks adapted from real-world software-defined
network controllers. The evaluation results demonstrate the effectiveness
and efficiency of NETREP for repairing network programs.

1 Introduction

Emerging tools for program synthesis and repair facilitate automation of pro-
gramming tasks in various domains. For example, in the domain of end-user
programming, synthesis techniques allow users without any programming expe-
rience to generate scripts from examples for extracting, wrangling, and manip-
ulating data in spreadsheets [13,40]. In computer-aided education, repair tech-
niques are capable of providing feedback on programming assignments to novice
programmers and help them improve programming skills [49,14]. In software
development, synthesis and repair techniques aim to reduce the manual efforts
in various tasks, including code completion [43,10], application refactoring [42],
program parallelization [8], bug detection [11,41], and patch generation [11,32].

As an emerging domain, Software-Defined Networking (SDN) offers the in-
frastructure for monitoring network status and managing network resources
based on programmable software, replacing traditional specialized hardware in
communication devices. Since SDN provides an opportunity to dynamically mod-
ify the traffic handling policies on programmable routers, this technology has
witnessed growing industrial adoption. However, using SDNs involves many pro-
gramming tasks that are inevitably susceptible to programmer errors leading to
bugs [3,23]. For example, a device with incorrect routing policies could forward a
packet to undesired destinations, and a buggy firewall rule may make the entire
network system vulnerable to security threats.

© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 353-372, 2022.
https://doi.org/10.1007/978-3-030-99527-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_19&domain=pdf

354 L. Shi et al.

In the SDN framework, a logically centralized control plane generates rules
that are installed into data planes, which in turn decides the routing of packets
throughout the network. While network verification is a well-studied field where
operators can be hinted on incorrectly installed rules [3,4,22], little prior work
has explored the problem of automatically repairing the corresponding bug in the
control plane, especially those written in widely used general-purpose languages
such as Java or Python. Existing work mostly restricts the target to control
plane programs written in domain-specific languages such as Datalog [51,17].

Since networks cannot tolerate even small mistakes, and most network oper-
ators are not trained in programming skills, debugging and repair tools in this
domain should prioritize accuracy and automation. This means that many exist-
ing techniques for general program repair are not suitable to this domain as they
trade off accuracy for heuristics for scaling with the size of analyzed programs
and number of discovered potential bugs.

Motivated by the demand for automated repair and the limitations of ex-
isting techniques, we develop a precise and scalable program repair technique
for network programs. Specifically, our repair technique takes as input a net-
work program and a set of unit tests, reveals the program location that causes
the test failure, and automatically generates a patch to fix the program. In the
setting of SDN, a unit test corresponds to an incorrectly installed routing rule
generated by the control plane from a reported packet. Such unit tests can be
discovered by a separate network verification procedure [3,4,22].

Our main idea is to use symbolic reasoning using constraints capturing the
semantics of the program for accurate repair, and modular analysis to improve
the efficiency. We extended the encoding techniques from prior work [21,12] to
support object-oriented features in Java. We also developed a new approach to
focus the analysis on one function at a time and gradually narrow down the range
of faulty statements along with the specification for the expected behavior.

The proposed technique is implemented in an automatic network program
repair tool called NETREP. To evaluate NETREP, we adapt 10 benchmarks from
real-world faulty network programs in Floodlight that require changing up to 3
lines of code to fix and apply NETREP to repair the benchmarks automatically.
The experimental results show that NETREP is able to find a repair that passes
all unit tests for faulty programs up to 738 lines of code for 8 benchmarks using
2 or 3 test cases, outperforming a state-of-the-art repair tool for general Java
programs. Furthermore, NETREP is efficient in terms of repair time, requiring
only an average running time of 744 seconds across all benchmarks.

Contributions. We make the following main contributions in this paper:

— We present an automated program repair technique that aims to help net-
work operators debug and fix network controller programs automatically.

— We describe a bug localization approach based on symbolic execution and
constraint solving for programs with imperative object-oriented features such
as virtual function calls.

— We propose novel modular analysis techniques to effectively scale up the
symbolic reasoning for automatic repair.

Automatic Repair for Network Programs 355

| @network public class MacAddr {

2 private long value;

: private MacAddr (long v) { value = v; }

4 public static MacAddr NONE = new MacAddr (0);

5 public static MacAddr of (long v) {return new MacAddr(v);}
6 oo)

7 public class FirewallRule {

8 public MacAddr dl_dst; public boolean any_dl_dst;

9 public FirewallRule () {

10 dl_dst = MacAddr .NONE; any_dl_dst = true; ... }
11 public boolean isSameAs(FirewallRule r) {

12 if (... || any_dl_dst != r.any_dl_dst

13 || (any_dl_dst == false &&

14 dl_dst != r.dl_dst)) {

15 return false; }
16 return true; 1}
1

7 R
Fig. 1: Code snippet about a bug in Floodlight.

public boolean test(long macl, long mac2) {

1

2 FirewallRule rl1 = new FirewallRule();

3 rl.dl_dst = MacAddr.of(macl); rl.any_dl_dst = false;
4 FirewallRule r2 = new FirewallRule();

5 r2.dl_dst = MacAddr.of(mac2); r2.any_dl_dst = false;
6 return ril.isSameAs(r2); 7}

Fig. 2: Unit test that reveals the bug in FirewallRule.

— We develop a tool called NETREP based on the proposed techniques and
evaluate it using 10 benchmarks adapted from real-world network programs.
The evaluation results demonstrate that NETREP is effective for bug local-
ization and able to generate correct patches for realistic network programs.

2 Overview

In this section, we give a high-level overview of our repair techniques and
walk through the NETREP tool using an example adapted from the Floodlight
SDN controller [9].

Figure 1 shows a simplified code snippet about firewall rules in Floodlight.
Specifically, the program consists of two classes — FirewallRule and MacAddr.
The FirewallRule class describes rules enforced by the firewall, including infor-
mation about source and destination mac addresses. The MacAddr class is an
auxiliary data structure that stores the raw value of mac addresses °.

The network program shown in Figure 1 is problematic because the isSameAs
function compares two mac addresses using the != operator rather than a nega-
tion of the equals functions. The != operator only compares two objects based
on their memory addresses, whereas the intent of the developer is to check if two
mac addresses have the same raw value. The bug is revealed by the unit test
in Figure 2, then confirmed and fixed by the Floodlight developers *. Next, let

3 A unique 48-bit number that identifies each network device.
4 https://github.com/floodlight /floodlight /commit/4d528e4bf5{02¢59347bb9cObeb1b875ba2c821e

https://github.com/floodlight/floodlight/commit/4d528e4bf5f02c59347bb9c0beb1b875ba2c821e

356 L. Shi et al.

us illustrate how NETREP localizes this bug based on unit tests test(1, 2) =
false and test (1, 1) = true and automatically synthesizes a patch to fix it.

At a high level, NETREP enters a loop that iteratively attempts to find the
fault location and synthesize the patch. Since our repair technique works in a
modular fashion, NETREP first selects a function F' in the program and tries
to repair each possible fault location at a time. If NETREP cannot synthesize a
patch consistent with the provided unit tests for any potential fault location in
F, it backtracks and selects the next function and repeats the same process until
all possible functions are checked. We now describe the experience of running
NETREP on our illustrative example.

Iteration 1. NETREP selects the constructor of FirewallRule as the target func-
tion. Fault localization determines that the fault is located at the dl_dst =
MacAddr .NONE part of Line 10, because it is related to the equality checking in
the unit test. However, it is not the fault location. NETREP tries to synthesize
a patch that passes all unit tests to replace this statement, but fails.

Iteration 2. NETREP selects the same function — constructor of FirewallRule,
but the fault localization switches to a different statement any_dl.dst = true
at Line 10. Similar to Iteration 1, the synthesizer cannot generate a correct patch
by replacing this statement.

Iteration 3. Since none of the statements in the constructor is the fault loca-
tion, NETREP now selects a different function: isSameAs. The fault localization
determines that any_dl_dst = false at Line 13 may be the fault location as it
may affect the testing results. However, having tried to replace the statement
with many other candidate statements, e.g., r.any_dl_dst = false, any.dl_dst
= true, the synthesizer still fails to generate the correct patch.

Last iteration. Finally, after several attempts to localize the fault, NETREP
identifies the fault lies in d1_dst !'= r.dl_dst at Line 14, which is indeed the
reported bug location. At this time, the synthesizer manages to generate a correct
patch !'dl_dst.equals(r.dl_dst). Replacing the original condition at Line 14
with this patch results in a program that can pass all the provided test cases, so
NETREP has successfully repaired the original faulty program.

3 Preliminaries

In this section, we present the language of network programs and describe a
program formalism that is used in the rest of paper. We also define the program
repair problem that we want to solve.

3.1 Language of Network Programs

The language of network programs considered in this paper is summarized in
Figure 3. A network program consists of a set of classes, where each class has an
optional annotation @network to denote that the class can benefit from network
domain-specific abstraction.

Automatic Repair for Network Programs 357

Prog P :=C" Stmt s :==1:=e | jmp (e) L
Class C ::= @network? class C {a™ F'*} | retv|z:=newC
Func F ::= function f(z1,...,7,) (L:s)" | z:=C.f(vi,...,0n)

Ezpre:=1]|c|opler,...,en) | z:=y.f(vi,...,0n)
LValue l =z | z.a | z[v] Immv:u=zx|c

x,y € Variable c¢ & Constant L € LinelD
C € ClassName f, fo € FuncName « € FieldName

Fig. 3: Syntax of network programs.

Each class in the program consists of a list of fields and functions. Each func-
tion has a name, a parameter list, and a function body. The function body is a
list of statements, where each statement is labeled with its line number. Various
kinds of statements are included in our language of network programs. Specif-
ically, assign statement [:= e assigns expression e to left value {. Conditional
jump statement jmp (e) L first evaluates predicate e. If the result is true, then
the control flow jumps to line L; otherwise, it performs no operation. Note that
our language does not have traditional if statements or loop statements, but
those statements can be expressed using conditional jumps. °

Return statement ret v exits the current function with return value v. New
statement x := new C' creates an object of class C' and assigns the object address

to variable z. Static call z := C. f(v1, ..., v,) invokes the static function f in class
C with arguments vy, . .., v, and assigns the return value to variable z. Similarly,
virtual call « := y.f(v1,...,v,) invokes the virtual function f on receiver object
y with arguments vy, ..., v, and assigns the return value to variable z. Different

kinds of expressions are supported including constants, variable accesses, field
accesses, array accesses, arithmetic operations, and logical operations. Since the
semantics of network programs is similar to that of traditional programs written
in object-oriented languages, we omit the formal description of semantics.

In addition, we assume each statement in the program is labeled with a
globally unique line number, and line numbers are consecutive within a function.

3.2 Problem Statement

We assume a unit test ¢ is written in the form of a pair (I,0), where I is the
input and O is the expected output. Given a network program P and a unit
test t = (I,0), we say P passes the test ¢ if executing P on input I yields the
expected output O, denoted by [P]; = O. Otherwise, if [P]; # O, we say P
fails the test t. In general, given a network program P and a set of unit tests &,
program P is faulty modulo £ if there exists a test t € £ such that P fails on ¢.

Now let us turn the attention to the meaning of fault locations and patches.

Definition 1 (Fault location and patch). Let P be a program that is faulty
modulo tests . Line L is called the fault location of P, if there exists a statement

5 Our repair techniques only handle bounded loops. If there are unbounded loops in
the network program, we need to perform loop unrolling.

358 L. Shi et al.

Algorithm 1 Modular Program Repair

1: procedure REPAIR(P,E)
Input: Program P, examples £
Output: Repaired program P’ or L to indicate failure
P < Abstraction(P);
V + {L+ false | L € Lines(P)}; P’ + L;
while P’ = | do
F < SelectFunction(P,V);
if F = | then return 1;
V, P’ + REPAIRFUNCTION(P, F,£,V);

return P’;

9: procedure REPAIRFUNCTION(P, F, E,V)
Input: Program P, function F', examples &, visited map V
Output: Updated visited map V, repaired program P’

10: P L

11: while P/ = 1 do

12: L <+ LocalizeFault(P, F,E,V);

13: if L # 1 then

14: V V[L — true];

15: else

16: V < V[L' — true | TransInFunc(L', P, F)];
17: if L = 1 or IsCallStmt(P, L) then return V, L;
18: P’ < SynthesizePatch(P, &, F, L);

19: return V,P’;

s such that replacing line L of P with s yields a new program that can pass all
tests in £. Here, the statement s is called a patch to P.

Problem statement. Given a network program P that is faulty modulo tests
&, our goal is to find a fault location L in P and generate the corresponding
patch s, such that for any unit test ¢ € £, the patched program P’ can always
pass the test t.

4 Modular Program Repair

In this section, we present our algorithm for automatically repairing network
programs from a set of unit tests.

4.1 Algorithm Overview

The top-level repair algorithm is described in Algorithm 1. The REPAIR proce-
dure takes as input a faulty network program P and unit tests £ and produces
as output a repaired program P’ or L to indicate repair failure.

At a high level, the REPAIR procedure maintains a visited map V from line
numbers to boolean values, representing whether each line of P is checked or not.

Automatic Repair for Network Programs 359

The REPAIR procedure first applies the domain-specific abstraction to program
P (Line 2) and initializes the visited map V by setting every line in P as not
checked (Line 3). Next, it tries to iteratively repair P in a modular way until it
finds a program P’ that is not faulty modulo tests £ (Lines 4 — 8). In particular,
the REPAIR procedure invokes SelectFunction to choose a function F' as the target
of repair (Line 5). If none of the functions in P can be repaired, it returns L
to indicate that the repair procedure failed (Line 6). Otherwise, it invokes the
REPAIRFUNCTION procedure (Line 7) to enter the localization-synthesis loop
inside the target function F.

In addition to the program P and tests £, the REPAIRFUNCTION procedure
takes as input a target function F' and the current visited map V. It produces as
output the updated version of the visited map V, as well as a repaired program
P’ or L to indicate that the function F' cannot be repaired. As shown in Lines
11 — 18 of Algorithm 1, REPAIRFUNCTION alternatively invokes sub-procedures
LocalizeFault and SynthesizePatch to repair the target function. In particular, the
goal of LocalizeFault is to identify a fault location in function F'. If LocalizeFault
manages to find a fault location L in F', then line L is marked as visited (Line
14). Otherwise, if LocalizeFault returns L, it means function F' and all functions
transitively invoked in F' are correct or not repairable. In this case, all lines in
F and its transitive callees are marked as checked (Line 16). Furthermore, if
the identified fault location L corresponds to a statement that invokes F”, it
means the fault location is inside F’. Thus, REPAIRFUNCTION directly returns
1 (Line 17) and SelectFunction will choose F’ as the target function in the next
iteration. On the other hand, the goal of the sub-procedure SynthesizePatch is
generating a patch for function F' given the fault location L. If SynthesizePatch
successfully synthesizes a patch and produces a non-faulty program P’, then the
entire procedure succeeds with repaired program P’. Otherwise, REPAIRFUNC-
TION backtracks with a new program location and repeat the same process.

In the rest of this section, we explain fault localization, modular analysis,
and patch synthesis in more detail.

4.2 Fault Localization

Next, we give a high-level description of our fault localization technique that
aims to find the fault location in a given program. This corresponds to the
LocalizeFault procedure in Algorithm 1. We will first show how to encode the
problem on an entire program, and then explain how the analysis can be made
modular to boost the performance.

At a high level, our fault localization technique uses a symbolic approach
by reducing the fault localization problem into a constraint solving problem. In
particular, we introduce a boolean variable for each line L, denoted by B[L], and
encode the fault localization problem as an SMT formula, such that the value
of the variable B[L] indicates whether line L is correct or not.

Checking faulty programs. To understand how to encode the fault localiza-
tion problem, let us first explain how to encode the consistency check given a

360 L. Shi et al.

program P and a test case t = (I,0). Specifically, the encoded SMT formula
&(t) consists of three components:

1. Semantic constraints. For each line L; : s;, we generate a formula @;(S, 5") to
describe the semantics of the statement s;. Specifically, given a state S that
holds before statement s;, @;(5,S’) is valid if S’ is the state after executing
s;. There are two parts of the constraint: the memory contents that are
changed, and the memory contents that are preserved. For example, in case
of an assignment statement, the constraint will claim that 1) the evaluation
result of the right value in state S equals to the left value in state S’, and
2) all values except for the left value are the same in S and S’.

2. Control flow integrity constraints. In order to ensure all traces satisfying the
constraint faithfully follow the control flow structure of a given program P,
we generate another set of formulae ®. Specifically, we require that any line
of code that is executed must have exactly one predecessor and one successor
that are executed, and the branch condition in the code must be respected
when picking the successor. This guarantees that there is exactly one valid
execution trace corresponding to one test case,

3. Consistency between program and test. For the provided test case t = (I, 0),
we also generate formula @;,,(So, I) and @yt (Sy, O) to ensure the program
behavior is consistent with the test. In particular, @;,(So, I) binds input I to
the initial state Sp and @4t (Sp, O) describes the connection between output
O and final state \S,,.

The satisfiability of formula &(¢) indicates the result of consistency check.
If &(t) is satisfiable, the solver generates a feasible execution trace and an as-
signment of all intermediate states along this trace. In this case, program P can
pass the test ¢t because there exists a valid trace following the control flow and
every pair of adjacent states in the trace is consistent with the semantics of the
corresponding statement. Otherwise, if @(t) is unsatisfiable, P fails the test t.

Now to check whether P against a set of unit tests £, we can conjoin the for-
mula @(t;) for each unit test t; € £ and obtain the conjunction ¢ = /\tjes D(t;).

The satisfiability of formula @ indicates whether P is faulty modulo tests & ©.

Methodology of fault localization. Let P be a faulty program modulo &,
we know the corresponding formula @ for consistency check is unsatisfiable.
Suppose the fault location is line L;, one key insight is that replacing the semantic
constraint @;(S,S”) with true yields a satisfiable formula. This is because true
does not enforce any constraint between the pre-state S and post-state S’, so a
previously invalid trace caused by the bug at L becomes valid now.

Based on this insight, we develop a methodology to find the fault location
using symbolic reasoning. Specifically, given a consistency check formula @, we
can obtain a fault localization formula @' by replacing the semantic constraint
&;(S,S") with B[L;] — @;(S,S’) for every line L;,i € [1,n]. Here, variable B[L;]
decides whether or not it turns the semantic constraint of L; into true. Thus,
B[L;] = false indicates L; is a fault location.

6 The encoding is described in more detail in the extended version [46].

Automatic Repair for Network Programs 361

One hiccup here is that formula @’ is always satisfiable and a model of ¢’
can simply assign B[L;] = false for all L;. It means all lines in the program are
fault locations, which is not useful for fault localization. To address this issue,
we can add a cardinality constraint stating there are exactly K variables in map
B that can be assigned to false, which forces the constraint solver to find exactly
K fault locations in program P.

Modular analysis. The method above can precisely compute a potential fault
location. But an obvious shortcoming is it is hard to scale. Encoding a long pro-
gram involves 1) a large number of semantic constraints, 2) many fault location
choices, as well as 3) many intermediate states to be assigned.

Notice that although a program can be arbitrarily long, developers usually
follow the design practice that every function is of limited size. Focusing on
analyzing one function at a time and recursively search for the final fault location
could be way more efficient than solving one NP-hard problem at the entire
program’s scale.

To facilitate modular analysis of a function, we need to summarize the be-
havior of its sub-modules (callee functions) and infer external specification from
its higher-level module (caller function).

The encoding method introduced above treats one line of code as a constraint
on its pre-state and post-state. To summarize the behavior of a callee function,
we aim to turn it into a similar constraint on the pre-state and post-state for the
calling statement. The inner states of this callee function should be skipped in
the encoding. We can compute such summaries of the target function’s callees
by symbolic execution. We start with a symbolic representation of the pre-state
and execute the callee function until it returns, and claim that the output state
equals the post-state. In this way, we can entirely eliminate all bug location
choices and inner state assignments in the callee function, as well as greatly
simplifying the semantic constraint.

There are two ways to infer the specification of target function. The first way
is to encode only the calling stack of the target function up until the top-level
function, where we can use the test case as the specification. All function calls
made by the target’s caller and transitive callers that are not in the stack can be
replaced by the automatically computed summary. We can also disable all fault
location choices except for lines in the target function. Another way is to infer a
possible pre-condition and post-condition of the target function. From the per-
spective of the caller, the target function is a line of code that puts an incorrect
constraint on its pre-state and post-state. After the analysis, the constraint solver
will infer a feasible pre-state and post-state assuming this incorrect constraint is
removed. This assignment can be used as the pre-condition and post-condition,
which eliminates the need to encode any caller function. Since the second ap-
proach will possibly introduce incompleteness into the analysis, we use it only to
infer a specification to synthesize the final patch, and use the first one for every
function’s analysis.

Domain-specific abstraction. A domain-specific abstraction is essentially a
function summary as discussed above. But for those repeatedly used network

362 L. Shi et al.

classes (identified by the @network annotation), we can pre-define some more
succinct abstractions based on domain knowledge to make the analysis easier.
The abstraction A[F] of a function F is an over-approximation of F' that is
precise enough to characterize the behavior of F.

The abstraction is useful due to two observations. First, source code for
network programs may only be partially available due to the use of high-level
interface and native implementation. For example, when comparing the equality
between two network addresses, the getClass function is frequently used, but
its implementation depends on the runtime and is not available. To make the
analysis easier, we can instead use the following abstraction for such comparison:

Alequals] : Az. Ay. (z.dtype = y.dtype A x.value = y.value),

where x.dtype denotes the dynamic type of the object x.

Second, network programs have complex operations that are challenging for
symbolic reasoning. For instance, bit manipulations are heavily used in network
data structures. While bit manipulations can improve the performance of net-
work programs, they present significant challenges for symbolic analysis due to
the encoding in the theory of bitvectors. We can give an abstraction equivalent in
correctness but simpler in the behavior, e.g., using the identity function instead
of a hash code computation.

4.3 Patch Synthesis

The last step of our repair algorithm is to generate a patch to fix the faulty
program. This corresponds to the SynthesizePatch procedure in Algorithm 1. It
can be reduced to a sketch finishing problem in program synthesis where we
replace the existing faulty line with a hole.

Our general idea is to use plain enumerative search with a depth bound in
the candidate patch’s space, but with two significant optimizations.

First, we reduce the search space with heuristics. On one hand, we only re-
place the core expression in the faulty statement with a hole to focus on the most
expressive part. To be specific, we consider changing the right-hand-side expres-
sions of assignments, conditional expressions of jump statements, return values
of return statements, and functions and arguments for function invocations. On
the other hand, we use a limited grammar to guide the search. We parameterize
all constants, variables, fields, functions, and operators over the sketch and only
instantiate constructs that are in scope. For example, given a particular sketch
with a hole, we only populate the variable set with all local and global variables
that are in scope of the hole. Also, if the hole corresponds to the conditional
expression of a if statement, we only add logical operators to the grammar.

Second, we use the local specification to guide the synthesis. Sketch comple-
tion is different from synthesizing a complete program in that the specification
is defined for the entire program. We have to repeatedly waste time on executing
the correct part of the program to verify a candidate patch. We use the tech-
nique described in the modular analysis section to generate a pre-condition and
post-condition for only the faulty line. In this way, only the generated patch

Automatic Repair for Network Programs 363

needs to be executed to verify against the specification, which greatly saves time
when the program grows larger.

5 Implementation

We have implemented the proposed repair technique in a tool called NETREP.
NETREP leverages the Soot static analysis framework [26] to convert Java pro-
grams into Jimple code, which provides a succinct yet expressive set of instruc-
tions for analysis. In addition, NETREP utilizes the Rosette tool [48] to perform
symbolic reasoning for fault localization and patch synthesis. While our imple-
mentation closely follows the algorithm presented in Section 4, we also conduct
several optimizations important to improve the performance of NETREP.

Memories for different types. Since the conversion between bitvectors and in-
tegers imposes significant overhead on running time, NETREP divides the mem-
ory into one part for integers and another for bitvectors. In this design, NETREP
automatically selects the memory chunk based on the variable types. The type
checking can guarantee that no such conversion will exist.

Stack and heap. In order to reduce the number of memory operations, NE-
TREP also divides the memory into stack and heap. As is standard, stack only
stores static data and its layout is deterministic. Therefore, stacks are imple-
mented using fixed-size vectors, and thus can be efficiently accessed for read and
write operations. On the other hand, heap stores dynamic data that are usually
not known at compile time, such as allocated objects. Since the heap size can-
not be determined beforehand, NETREP uses an uninterpreted function f(x) to
represent heaps, where z is the address and f(z) is the value stored at x.
String values. Since reasoning over string values is a challenging task and not
always necessary for repairing network programs, we simplified the representa-
tion of strings with integer values. Specifically, NETREP maps each string literal
to a unique integer and represents all string operations (e.g. concatenation) with
uninterpreted functions.

Bounded program analysis. In order to improve the repair time, NETREP
only performs bounded program analysis for fault localization and patch syn-
thesis. Namely, we unroll loops and inline functions up to K times, where K is a
predefined hyper-parameter. In this way, function summaries can be easily and
efficiently computed using symbolic execution.

6 Evaluation

To evaluate the proposed techniques, we perform experiments that are designed
to answer the following research questions:

RQ1 Is NETREP effective to repair realistic network programs?

RQ2 How efficient are the fault localization and repair techniques in NETREP?

RQ3 How helpful are modular analysis and domain-specific abstraction for repair-
ing network programs?

364 L. Shi et al.

Loc Synth Total

ID Module LOC # Funcs # Tests Succ Exp Time (s) Time (s) Time (s)
1 DHCP 212 17 2 Yes Yes 40 117 157
2 Load Balancer 336 28 2 No No - - -
3 Firewall 262 13 2 Yes Yes 893 197 1090
4 DHCP 431 32 2 Yes Yes 95 39 134
5 Utility 809 65 2 No No - - -
6 Routing 605 44 3 Yes Yes 271 179 450
7 Utility 454 45 2 Yes Yes 39 46 85
8 Learning Switch 738 34 2 Yes No 571 595 1166
9 Database 442 17 2 Yes No 310 2139 2449
10 Link Discovery 671 46 2 Yes No 268 158 426

Table 1: Experimental results of NETREP.

RQ4 How is NETREP compared to other repair tools for Java programs?

Benchmark collection. To obtain realistic benchmarks, we crawl the commit
history of Floodlight [9], a representative open-source SDN controller in Java
that supports the OpenFlow protocol and a rich set of network functions. To
distinguish commits caused by bug repairs from those generated for non-repair
scenarios, we identify commits based on the following criteria: 1) The commit
message contains keywords about repairing bugs, e.g., “bug”, “error”, “fix”; 2)
The commit changes no more than three lines of code.

Following these criteria, we have collected 10 commits from the Floodlight
repository and adapted them into our benchmarks. Specifically, given a commit
in the repository, we take the code before the commit as the faulty network
program and the version after the commit as the ground-truth repaired program.
The code is post-processed and the parts irrelevant to the bug of interest are
removed. We also identify corresponding unit tests and modify them to directly
reveal the bug as appropriate. Each benchmark in our evaluation consists of a
faulty network program and its corresponding unit tests.

Experimental setup. All experiments are conducted on a computer with 4-core
2.80GHz CPU and 16GB of physical memory, running the Arch Linux Operating
system. We use Racket v7.7 as the compiler and runtime system of NETREP and
set a time limit of 1 hour for each benchmark.

6.1 Main Results

Our main experimental results are summarized in Table 1. The column labeled
“Module” describes the network module to which the benchmark belongs. The
next two columns labeled “LOC” and “# Funcs” show the number of lines
of source code (in Jimple) and the number of functions, respectively. The “#
Tests” column presents the number of unit tests used for fault localization and
patch synthesis. Next, the “Succ” and “Exp” columns show whether NETREP
can successfully repair the program and if the generated patch is exactly the
same as the ground-truth. Since NETREP returns the first fix that can pass all
provided test cases, the repaired programs are not necessarily the same as those

Automatic Repair for Network Programs 365

expected in the ground-truth. In this case, the table will show a “Yes” in the
“Succ” column and a “No” in the “Exp” column. Finally, the last three columns
in Table 1 denote the fault localization time, patch synthesis time and the total
running time of NETREP.

As shown in Table 1, there is a range of 13 to 65 functions in each benchmark
and the average number of functions is 34 across all benchmarks. Each bench-
mark has 212 — 809 lines of Jimple code, with the average being 496. NETREP
succeeds in repairing 8 out of 10 benchmarks. Furthermore, for 5 benchmarks
that can be successfully repaired, NETREP is able to generate exactly the same
fix as ground-truth. Given that our benchmarks cover programs from a variety
of modules of Floodlight, such as DHCP Server, Firewall, etc, we believe that
NETREP is effective to repair realistic network programs (RQ1).

We inspected the reason why NETREP fails to repair benchmarks 2 and 5.
NETREP is not able to localize the fault in benchmark 2 due to its incomplete
support for unbounded data structures with dynamic allocation such as hash
map. For Benchmark 5, NETREP is able to localize the fault but not able to
synthesize the correct patch. This is because the expected function to be invoked
has side effects with another function, which needs some improvements in the
specification checking to verify.

Regarding the efficiency, NETREP can repair 8 benchmarks in an average of
744 seconds with only 2 to 3 test cases. The fault localization time ranges from
39 seconds to 893 seconds, with 50% of the benchmarks within five minutes. The
patch synthesis time ranges from 39 seconds to 2139 seconds, with 60% of the
benchmarks within five minutes. In summary, the evaluation results show that
NETREP only takes minutes to localize bugs in a faulty program and synthesize
a correct patch based on two to three unit tests (RQ2).

6.2 Ablation Study

To explore the impact of modular analysis and domain-specific abstraction on
the proposed repair technique, we develop three variants of NETREP:

— NETREP-NOMOD is a variant of NETREP without modular analysis. Specif-
icallyy, NETREP-NOMOD inlines the functions in a given program but still
uses abstractions for network data structures for fault localization and patch
synthesis.

— NETREP-NOABS is a variant of NETREP without domain-specific abstraction.
In particular, NETREP-NOABS uses the original concrete implementation of
network functions for symbolic reasoning. If the implementation is written in
a different language, we manually translate the implementation to Java.

— NETREP-NOMODARBS is a variant of NETREP without modular analysis or
domain-specific abstraction. NETREP-NOMODABS simply inlines all func-
tions in the faulty program, including those in the network data structures,
and performs symbolic analysis for fault localization and patch synthesis.

To understand the impact of modular analysis and domain-specific abstrac-
tion, we run all variants on the 10 collected benchmarks. For each variant, we

366 L. Shi et al.

®— NETREP
== NETREP-NOA
- 2,000 == NETREP-NOM
=be— NETREP-NOMA

1,000 |-

Running Time (s

Solved Benchmarks

Fig.4: Comparing NETREP against three variants.

measure the total running time (including time for fault localization and time
for patch synthesis) on each benchmark, and order the results by running time
in increasing order. The results for all variants are depicted in Figure 4. All lines
stop at the last benchmark that the corresponding variant can solve within 1
hour time limit.

As shown in Figure 4, both NETREP-NOABS and NETREP-NOMOD can only
solve 4 out of 10 benchmarks in the evaluation, with the average running time
being 569 seconds and 610 seconds, respectively. NETREP-NOMODARBS solves
the least number of benchmarks: 3 out of 10. For the ones that it can solve,
the average running time is 1165 seconds. This experiment shows that modu-
lar analysis and domain-specific abstraction are both great boost to NETREP’s
efficiency to repair network programs (RQ3).

6.3 Comparison with the Baseline

To understand how NETREP performs compared to other Java program repair
tools, we compare NETREP against a state-of-the-art tool called JAID [5] on our
benchmarks. Specifically, JAID takes as input a faulty Java program, a set of
unit tests, and a function signature for fault localization and patch synthesis,
a setting closest to NETREP among a variety of tools. Note that JAID solves a
simpler repair problem than NETREP, because it requires the user to specify a
function that is potentially incorrect in the program, whereas NETREP does not
need input other than the faulty program and unit tests. In order to run JAID
on our benchmarks, we adjust their formats to fit JAID’s and provide the faulty
function (known from the ground truth) as input for JAID.

JAID will indefinitely enumerate all possible patches, rather than recommend-
ing a most correct one. We think it is successful if the expected patch can be
found among the results. In practice, human assistance is needed to pick out this
patch from the thousands of candidates.

As a result, JAID is able to finish on 8 out of 10 benchmarks. The expected
patches are found among 2 of them, whereas NETREP can give the expected
result for 5 benchmarks on the first recommendation. For one benchmark, JAID
is unable to fix. For another one, it runs out of memory.

We argue that NETREP is better suited for automatically repairing network
programs compared to JAID. First, it only requires network operators to provide

Automatic Repair for Network Programs 367

unit test cases. As is discussed above, they can be automatically discovered by
another verification or testing procedure. In comparison, JAID requires users to
have skill of programming network controllers to identify the buggy function
and pick the correct patch from the results. This is beyond the ability of most
network operators and starts to require an expert team. Second NETREP has
higher repairing accuracy. As we discussed above, network is sensitive to small
mistakes. High accuracy is crucial for a network to function correctly.

In summary, NETREP is more effective in automatically fixing bugs in net-
work programs compared to state-of-the-art repairing tools for Java programs,
especially with respect to repairing accuracy and automation (RQ4).

7 Related Work

Automated program repair. Automated program repair is an active re-
search area that aims to automatically fix the mistakes in programs based on
specifications of correctness criteria [11,28,39,18], with a variety of applications
such as aiding software development [34], finding security vulnerabilities [37],
and teaching novice programmers [49,14]. Different techniques have been pro-
posed to solve the automated program repair problem, including heuristics-based
techniques [16,31], semantics-based techniques [37,27], and learning-based tech-
niques [45,30,32,47]. NETREP is a semantics-based automated repair tool. Dif-
ferent from prior work, NETREP is specialized to repair network programs based
on modular analysis and network data structure abstractions.

Fault localization. Researchers have developed various approaches to fault lo-
calization, including spectrum-based, learning-based, and constraint-based tech-
niques. Specifically, the spectrum-based techniques [27,1,2,7,44,6,19] perform
fault localization by identifying which part of program is active during a run
through execution profiles (called program spectrum). Learning-based techniques
[29,53,54] typically train machine learning models to predict and rank possible
fault locations. By contrast, constraint-based techniques [21,20,12] encode the
semantics of problems as logical constraints and reduce the fault localization
problem into constraint satisfaction problem. In spirit, NETREP uses a similar
idea for fault localization. However, NETREP performs modular analysis and
enables debugging programs involving object-oriented features, whereas prior
work only analyzes the entire program in a C-like language. Besides, NETREP
reuses the fault localization result to speedup the patch synthesis while prior
work mainly focuses on the fault localization step.

Patch synthesis. Many synthesis algorithms have been developed for generat-
ing patches, including enumerative search [27], constraint-based techniques [37],
statistical model [52], machine learning [15], hint from existing code [25], and
so on. In terms of patch synthesis, NETREP generates a context-free grammar
from the context of fault locations and performs enumerative search based on the
grammar to synthesize patches. It does not require machine learning model or
statistical information for ranking all possible patches. However, it is conceivable
that NETREP will benefit from the guidance of such ranking techniques.

368 L. Shi et al.

Verification and synthesis for SDN. In the networking domain, several ver-
ification tools [3,33,23,24] have been proposed based on either model checking
or theorem proving. For example, VERICON [3] performs deductive verification
to verify the correctness of SDN programs specified by network-wide invari-
ants on all admissible topologies. In addition to verification, synthesis tech-
niques [36,35,38] have also been proposed to aid software-defined networking.
NETREP aims to repair network programs automatically, which is a different
problem than SDN verification or synthesis.

Repair for network programs. Our work is most related to automated re-
pair of network programs in the SDN domain [50,51,17]. Prior work about auto-
repair [50,51] relies on using Datalog to capture the operational semantics of the
target language to be repaired. The repair techniques work for domain-specific
languages (e.g. Datalog or Ruby on Rails) with simple structure. Similarly, Ho-
jjat et al. [17] propose a framework based on horn clause repair problem to
help network operators fix faulty configurations. However, NETREP targets Java
network programs with object-oriented features and more complex constructs,
which cannot be handled by existing techniques.

8 Limitations and Future Work

We discuss several limitations of NETREP that we plan to improve in future
work. First, NETREP repairs the faulty network program with the first correct
patch that can pass all tests. A user interaction that resumes the synthesis can be
introduced in case it is not intended by the user or a more formal specification.

Second, patches that require complicated changes, e.g., those involving con-
trol flow structures, are beyond NETREP’s ability. They make up 44% of our col-
lection of bug-fixing commits. We envision that the challenge can be addressed
by introducing more sophisticated patch synthesis techniques such as searching
over a domain-specific language for edits.

Third, in order to force symbolic execution to terminate in finite time, NE-
TREP currently unrolls all loops in the network program, which may result in
missing a potential bug. Loop invariant inference techniques can be leveraged to
overcome this challenge and still guarantee termination.

9 Conclusion

In this paper, we have proposed an automated repair technique for network
controller programs with unit tests as specifications. Our technique internally
performs symbolic reasoning for bug localization and patch synthesis, optimized
by network domain-specific abstractions and modular analysis to reduce encod-
ing size. we have implemented a tool called NETREP and evaluated it on 10
benchmarks adapted from the Floodlight framework. The experimental results
demonstrate that NETREP is effective for repairing realistic network programs
with moderate change sizes.

Automatic Repair for Network Programs 369

References

11.

12.

13.

14.

15.

. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault local-

ization. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE). pp. 88-99. IEEE Computer Society (2009)

Abreu, R., Zoeteweij, P., van Gemund, A.J.: On the accuracy of spectrum-based
fault localization. In: Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION. pp. 89-98 (2007)

Ball, T., Bjgrner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: Vericon: towards verifying controller programs in software-
defined networks. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). pp. 282-293. ACM (2014)

. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network

configuration verification. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. pp. 155-168 (2017)

Chen, L., Pei, Y., Furia, C.A.: Contract-based program repair without the con-
tracts. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE). pp. 637-647. IEEE Computer Society (2017)

Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.A.: Pinpoint: Problem
determination in large, dynamic internet services. In: Proceedings of the Inter-
national Conference on Dependable Systems and Networks (DSN). pp. 595-604.
IEEE Computer Society (2002)

Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for java.
In: Proceedings of the Furopean Conference on Object-Oriented Programming
(ECOOP). Lecture Notes in Computer Science, vol. 3586, pp. 528-550. Springer
(2005)

Fedyukovich, G., Ahmad, M.B.S., Bodik, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp. 572-585. ACM (2017)
Floodlight: https://github.com/floodlight /floodlight (2021)

. Galenson, J., Reames, P., Bodik, R., Hartmann, B., Sen, K.: Codehint: dynamic

and interactive synthesis of code snippets. In: Jalote, P., Briand, L.C., van der
Hoek, A. (eds.) Proceedings of the International Conference on Software Engineer-
ing (ICSE). pp. 653-663. ACM (2014)

Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56-65 (2019)

Griesmayer, A., Bloem, R., Cook, B.: Repair of boolean programs with an ap-
plication to c. In: International Conference on Computer Aided Verification. pp.
358-371. Springer (2006)

Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: Ball, T., Sagiv, M. (eds.) Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). pp. 317-330. ACM
(2011)

Gulwani, S., Radicek, 1., Zuleger, F.: Automated clustering and program repair for
introductory programming assignments. In: Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI). pp. 465-480. ACM
(2018)

Gupta, R., Pal, S., Kanade, A., Shevade, S.K.: Deepfix: Fixing common C lan-
guage errors by deep learning. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of

https://github.com/floodlight/floodlight

370

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. Shi et al.

the Thirty-First AAAI Conference on Artificial Intelligence. pp. 1345-1351. AAAI
Press (2017)

Harman, M.: Automated patching techniques: the fix is in: technical perspective.
Commun. ACM 53(5), 108 (2010)

Hojjat, H., Riitmmer, P., McClurg, J., Cerny, P., Foster, N.: Optimizing horn solvers
for network repair. In: Piskac, R., Talupur, M. (eds.) Proceedings of the Formal
Methods in Computer-Aided Design (FMCAD). pp. 73-80. IEEE (2016)

Hong, S., Lee, J., Lee, J., Oh, H.: SAVER: scalable, precise, and safe memory-error
repair. In: Proceedings of the International Conference on Software Engineering
(ICSE). pp. 271-283. ACM (2020)

Jones, J.A., Harrold, M.J., Stasko, J.T.: Visualization of test information to assist
fault localization. In: Proceedings of the 24th International Conference on Software
Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA. pp. 467-477.
ACM (2002)

Jose, M., Majumdar, R.: Bug-assist: Assisting fault localization in ANSI-C pro-
grams. In: Proceedings of International Conference on Computer Aided Verification
(CAV). LNCS, vol. 6806, pp. 504-509. Springer (2011)

Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI). pp. 437-446. ACM (2011)

Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static check-
ing for networks. In: 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). pp. 113-126 (2012)

Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: Verifying
network-wide invariants in real time. In: Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI). pp. 15-27. USENIX
Association (2013)

Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., Clark, R.J.: Kinetic:
Verifiable dynamic network control. In: Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI). pp. 59-72. USENIX
Association (2015)

Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Interna-
tional Conference on Computer Aided Verification. pp. 217-233. Springer (2015)
Lam, P., Bodden, E., Lhotdk, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop. vol. 15 (2011)

Le, X.D., Chu, D., Lo, D., Goues, C.L., Visser, W.: S3: syntax- and semantic-guided
repair synthesis via programming by examples. In: Bodden, E., Schéfer, W., van
Deursen, A., Zisman, A. (eds.) Proceedings of the Joint Meeting on Foundations
of Software Engineering, (ESEC/FSE). pp. 593-604. ACM (2017)

Li, G., Liu, H., Chen, X., Gunawi, H.S., Lu, S.: Dfix: automatically fixing timing
bugs in distributed systems. In: Proceedings of the ACM Conference on Program-
ming Language Design and Implementation (PLDI). pp. 994-1009. ACM (2019)
Li, X., Li, W., Zhang, Y., Zhang, L.: Deepfl: integrating multiple fault diagnosis
dimensions for deep fault localization. In: Zhang, D., Mgller, A. (eds.) Proceed-
ings of the SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). pp. 169-180. ACM (2019)

Li, Y., Wang, S., Nguyen, T.N.: DIfix: context-based code transformation learn-
ing for automated program repair. In: Proceedings of International Conference on
Software Engineering (ICSE). pp. 602-614. ACM (2020)

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Automatic Repair for Network Programs 371

Long, F., Rinard, M.: Staged program repair with condition synthesis. In: Proceed-
ings of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
pp. 166-178. ACM (2015)

Long, F., Rinard, M.: Automatic patch generation by learning correct code. In:
Proceedings of the Symposium on Principles of Programming Languages (POPL).
pp. 298-312. ACM (2016)

Lopes, N.P., Bjogrner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Checking
beliefs in dynamic networks. In: Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). pp. 499-512. USENIX Asso-
ciation (2015)

Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A.,
Scott, A.: Sapfix: automated end-to-end repair at scale. In: Proceedings of the In-
ternational Conference on Software Engineering: Software Engineering in Practice,
ICSE (SEIP). pp. 269-278. IEEE / ACM (2019)

McClurg, J., Hojjat, H., Cerny, P.: Synchronization synthesis for network pro-
grams. In: Majumdar, R., Kuncak, V. (eds.) Proceedings of the International
conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 10427, pp. 301-321. Springer (2017)

McClurg, J., Hojjat, H., Cerny, P., Foster, N.: Efficient synthesis of network up-
dates. In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). pp.
196-207. ACM (2015)

Mechtaev, S.; Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: Proceedings of the International Conference on
Software Engineering (ICSE). pp. 691-701. ACM (2016)

Padon, O., Immerman, N., Karbyshev, A., Lahav, O., Sagiv, M., Shoham, S.: De-
centralizing SDN policies. In: Proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL). pp. 663-676. ACM (2015)
Perry, D.M., Kim, D., Samanta, R., Zhang, X.: Semcluster: clustering of imperative
programming assignments based on quantitative semantic features. In: Proceedings
of the ACM Conference on Programming Language Design and Implementation
(PLDI). pp. 860-873. ACM (2019)

Polozov, O., Gulwani, S.: Flashmeta: a framework for inductive program synthesis.
In: Aldrich, J., Eugster, P. (eds.) Proceedings of theACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, (OOPSLA). pp. 107-126. ACM (2015)

Pradel, M., Sen, K.: Deepbugs: a learning approach to name-based bug detection.
Proc. ACM Program. Lang. 2(OOPSLA), 147:1-147:25 (2018)

Raychev, V., Schafer, M., Sridharan, M., Vechev, M.T.: Refactoring with synthe-
sis. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceedings of the ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, (OOPSLA). pp. 339-354. ACM (2013)

Raychev, V., Vechev, M.T., Yahav, E.: Code completion with statistical language
models. In: O’Boyle, M.F.P., Pingali, K. (eds.) Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). pp.
419-428. ACM (2014)

Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Pro-
ceedings of the IEEE International Conference on Automated Software Engineering
(ASE). pp. 30-39. IEEE Computer Society (2003)

372 L. Shi et al.

45. Sakkas, G., Endres, M., Cosman, B., Weimer, W., Jhala, R.: Type error feed-
back via analytic program repair. In: Proceedings of the International Conference
on Programming Language Design and Implementation (PLDI). pp. 16-30. ACM
(2020)

46. Shi, L., Wang, Y., Alur, R., Loo, B.T.: NetRep: Automatic repair for network
programs. https://arxiv.org/abs/2110.06303 (2021)

47. Sidiroglou-Douskos, S., Lahtinen, E., Long, F., Rinard, M.: Automatic error elim-
ination by horizontal code transfer across multiple applications. In: Proceedings
of the ACM Conference on Programming Language Design and Implementation
(PLDI). pp. 43-54. ACM (2015)

48. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI). pp. 530-541. ACM (2014)

49. Wang, K., Singh, R., Su, Z.: Search, align, and repair: data-driven feedback gener-
ation for introductory programming exercises. In: Proceedings of the ACM Confer-
ence on Programming Language Design and Implementation (PLDI). pp. 481-495.
ACM (2018)

50. Wu, Y., Chen, A., Haeberlen, A., Zhou, W., Loo, B.T.: Automated network repair
with meta provenance. In: Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets). pp. 26:1-26:7. ACM (2015)

51. Wu, Y., Chen, A., Haeberlen, A., Zhou, W., Loo, B.T.: Automated bug removal
for software-defined networks. In: Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). pp. 719-733. USENIX Asso-
ciation (2017)

52. Xiong, Y., Wang, J., Yan, R., Zhang, J., Han, S., Huang, G., Zhang, L.: Precise
condition synthesis for program repair. In: Proceedings of the International Con-
ference on Software Engineering (ICSE). pp. 416-426. IEEE / ACM (2017)

53. Xuan, J., Monperrus, M.: Learning to combine multiple ranking metrics for fault
localization. In: Proceedings of the IEEE International Conference on Software
Maintenance and Evolution (ICSME). pp. 191-200. IEEE Computer Society (2014)

54. Zhang, Z., Lei, Y., Tan, Q., Mao, X., Zeng, P., Chang, X.: Deep learning-based
fault localization with contextual information. IEICE Trans. Inf. Syst. 100-D(12),
3027-3031 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2110.06303
http://creativecommons.org/licenses/by/4.0/

	Automatic Repair for Network Programs
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Modular Program Repair
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Limitations and Future Work
	9 Conclusion
	References

