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ABSTRACT

Equivalence checking for SQL queries has many real-world applica-
tions but typically requires supporting an expressive SQL language
in order to be practical. We develop VERIEQL, a system that can
prove and disprove equivalence of complex SQL queries. Specifi-
cally, given two SQL queries under a database schema, VERIEQL
can verify whether these two queries always produce identical
results on all possible input databases up to a bounded size that
conform to the schema. This paper demonstrates VERIEQL in three
scenarios, including validating the correctness of query optimiza-
tions, grading SQL queries on online coding platforms, and finding
implementation bugs in database management systems.
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1 INTRODUCTION

SQL, the de facto standard query language for relational databases,
has been broadly studied in the databases community and is well-
supported by relational database engines [6]. Equivalence checking
of SQL queries has many real-world applications, such as validating
rewrites for query optimization [13], finding bugs in database man-
agement systems [10], and grading SQL queries automatically [2].

Motivated by these real-world applications, we developed a tool
called VERIEQL that aims to prove and disprove equivalence of SQL
queries automatically. At a high level, VERIEQL takes as input two
SQL queries Q1, Q2 over schema S, and checks if Q; and Q, are
semantically equivalent for a space of inputs. If VERIEQL identifies
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an input database where Q1 and Q2 produce different results, we can
safely conclude that Q1 and Qy are not equivalent with this input
being a counterexample. Otherwise, we prove that Q; is equivalent
to Q2 for any input database in the entire space. Internally, VERIEQL
utilizes a symbolic reasoning approach [9]. It constructs symbolic
input databases and computes the symbolic outputs of Q1 and Q2,
through a rigorous encoding of query semantics using satisfiability
modulo theories (SMT). This enables us to reduce the equivalence
checking problem into an SMT problem and resort to off-the-shelf
constraint solvers to determine the satisfiability of SMT formulas.

Expressive query language. VERIEQL supports a wide variety
of SQL operations. In addition to selection, projection, inner join,
outer joins, GROUP BY, and aggregate functions, VERIEQL also sup-
ports WITH clauses, IF, CASE WHEN, ORDER BY, LIMIT, set/bag union,
intersection, minus, and three-valued semantics involving NULL’s.
Many of these operations, such as WITH, ORDER BY, LIMIT, or their
realistic combinations, are not supported by existing equivalence
checkers. To the best of our knowledge, VERIEQL supports the
most expressive query language compared to all prior work such
as COSETTE [3, 4], SPES [13], and SQLSOLVER [8]. Neither COSETTE
nor SPES can reason equivalence involving ORDER BY. SQLSOLVER
cannot support conditional statements such as IF and CASE WHEN.
Our experimental results [9] showed that VERIEQL can prove or
disprove over 75% of a large benchmark suite with more than
24,000 query pairs. It significantly outperforms prior work such as
CoseTTE and SPES, which support 0.2% and 1.2% of the SQL queries
from the benchmark suite, respectively.

Genuine counterexample. To provide firm evidence when two
SQL queries are not equivalent, VERIEQL can generate a counterex-
ample disproving the equivalence based on the result of its symbolic
reasoning. The counterexample consists of concrete input tables
under the given schema and is guaranteed to be genuine. In other
words, (1) the tables always satisfy the integrity constraints defined
in the schema, and (2) executing two provided SQL queries on those
input tables guarantees to produce different results.

Scalability and Small-Scope Hypothesis. Thanks to the sym-
bolic reasoning techniques that only involve simple and decidable
first-order theories such as theory of integers and uninterpreted
functions, VERIEQL can scale to a moderate-size symbolic input
database for equivalence checking. Specifically, for 70% of the 15,200
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Queries
Query 1

SELECT ROUNDI (SUM(ORDER_DATE = CUSTOMER_PREF_DELIVERY_DATE) /
COUNT(*)) *100,2)

Schema
Tables Definition

DELIVERY: {
DELIVERY_ID": "INT

AS IMMEDIATE_PERCENTAGE ‘CUSTOMER ID" “INT"
‘ORDER_DATE": ‘DATE"
'CUSTOMER_PREF_DELIVERY_DATE": ‘DATE'

)

FROM DELIVERY

Integrity Constraints

Query2 [{Cprimary" (¢ value": “DELIVERY.DELIVERY.ID"H} |

SELECT ROUND(SUM(F(ORDER_DATE = CUSTOMER_PREF_DELIVERY.DATE, 1, 0)) /
COUNTIDELIVERY_ID) * 100, 2
AS IMMEDIATE_PERCENTAGE
FROM DELIVERY

Result
Non-equivalent

Counterexample

DELIVERY

1970-01-01

Bound = 2
1970-01-01

Verify | Dialect: MysaL

‘Show SMT Formula  Copy Counterexample SQL Code

Figure 1: Graphical interface of the VERIEQL tool.

benchmarks where counterexamples are not identified, VERIEQL
can check equivalence on databases with each table containing
5 symbolic tuples within 10 minutes [9]. According to the small-
scope hypothesis reported in prior work [11], “mistakes in most
of the queries may be explained by only a small number of tuples”
Our experience with VERIEQL is consistent with the small-scope
hypothesis. In particular, among 3,619 non-equivalent benchmarks,
96% of them have counterexample tables with less than 3 tuples.

Graphical interface. For better usability, VERIEQL provides a
graphical interface, illustrated in Figure 1. On the left, the user can
provide two SQL queries Q1 and Q> for equivalence checking in
a standard SQL language. The interface also provides a text box
for users to specify the maximum size of input tables they want
VERIEQL to check against. On the right, the user can specify the
schema S, including a complete description of table definitions and
integrity constraints (such as primary keys, foreign keys, nullabil-
ity, and value ranges). After clicking the Verify button, VERIEQL
performs symbolic reasoning (explained in more detail in Section 2)
to determine if Q; and Q3 are equivalent given the maximum table
size and shows the result to the user. If Q1, Q2 are not equivalent,
VERIEQL also displays a set of concrete tables under schema S as
the counterexample that refutes the equivalence.

Supporting Different SQL Dialects. To be compatible with a wide
variety of academic and industrial settings, VERIEQL considers
its SQL semantics based on four popular dialects, namely MySQL,
MariaDB, Oracle, and PostgreSQL. It also features a switch for
users to specify the database management system and select the
corresponding SQL dialect.

Demonstration details. We demonstrate the VERIEQL tool in
three scenarios: (1) validating the correctness of query rewrites, (2)
automated grading of SQL queries from online coding platforms,
and (3) identifying bugs in database management systems. These
scenarios highlight VERIEQL’s capability of proving equivalence of
complex SQL queries and disproving the equivalence with genuine
counterexamples. During the demonstration, we will present how
to use the graphical interface of VERIEQL, illustrate the workflow
of symbolic reasoning with concrete SQL queries, and explain how
to interpret the verification results in different usage scenarios.

2 SYSTEM OVERVIEW

The schematic workflow of VERIEQL is shown in Figure 2. At a high
level, the VERIEQL system consists of four modules: input analyzer,
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semantics encoder, equality checker, and counterexample generator.
In what follows, we describe these modules in more detail.

Input analyzer. Given two SQL queries Q1, Q2 and their database
schema § with the corresponding integrity constraint C, VERIEQL
first checks that all these inputs are well-formed and there is no
syntactic error. Then it performs a conformance check to validate
that Q1 and Qy are consistent with the schema S, i.e., all tables and
columns used in Q1, Q2 exist in S and their types match the decla-
rations in S. In case of errors, VERIEQL terminates and presents
the error message to the user.

Semantics encoder. To reason about the equivalence between Q1
and Qy, VERIEQL first builds a symbolic database T that satisfies
the integrity constraint C based on schema S, and then it performs
symbolic execution to obtain the symbolic results Ry, Ry of Q1, Q2
over I'. The symbolic database is a set of symbolic tables. Each table
consists of a list of N symbolic tuples, where a variable represents
each symbolic tuple. To ensure that I satisfies the integrity con-
straint C, VERIEQL encodes C as an SMT formula @ over variables
in T'. For example, consider a database that only contains one table
EMP(id, age) and N = 2, we can create two symbolic tuples t;
and t; for EMP in the symbolic database I', where t1, t are variables.
If the integrity constraint requires the age to be positive, we can
encode it and obtain ¢ : t;.age > 0 A fp.age > 0.

To perform symbolic execution, VERIEQL faithfully encodes the
relations between inputs and outputs of each SQL operation as an
SMT formula. By composing the formulas of all operations in a
query Q;, we can obtain the formula ®g; describing the result R;.
To understand the encoding, let us continue with the EMP example
and consider the following query:

SELECT id FROM EMP WHERE age > 30
Suppose the result R has tuples ¢] and t;, the formula ®p is

(t1.age > 30 — —Del(#]) A t].id = t;.id) A(2;.age
A(tz.age > 30 — —Del(t;) A t}.id = t,.id) A(t2.age

30 — Del(¢)))
30 — Del(z))

INIA

where Del(t) is an uninterpreted function denoting whether the
tuple t is deleted or not.

Equality checker. After obtaining the query results and formu-
las from symbolic execution, VERIEQL needs to decide if the two
query results Ry, Ry are always equal for any symbolic database
I' conforming to the schema S (and the integrity constraint C).
The key idea is to perform a symbolic search to find a concrete
database D such that the query results R; and Ry are unequal under
the bag semantics. In particular, VERIEQL builds an SMT formula
®c A DR, ADPR, ARy # Ry and checks its satisfiability using the Z3
SMT solver [7]. Intuitively, the formula asserts that the database D
satisfies the integrity constraint encoded by @, but the result Ry
is not equal to Ry. If the formula is unsatisfiable, such a database
D does not exist under the given size bound, so Q; and Q are
(bounded) equivalent. Otherwise, if the formula is satisfiable, Q; is
not equivalent to Q.

Counterexample generator. Where Q1 and Q» are not equivalent,
VERIEQL generates a counterexample database as the evidence.
Specifically, VERIEQL obtains a model of the formula ®¢ A g, A
®p, A R1 # R that maps each variable in the formula to a concrete
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Figure 2: The schematic workflow of VERIEQL.

SELECT DEPTNO, COUNT (") FILTER (WHERE JOB = 'CLERK)

Q; | FROM(SELECT * FROM EMP WHERE DEPTNO = 10 UNION ALL
SELECT * FROM EMP WHERE DEPTNO > 20) AS t3 GROUP BY DEPTNO
SELECT DEPTNO, COALESCE (SUM (EXPR$1), 0)
FROM (SELECT DEPTNO, COUNT (*) FILTER (WHERE JOB = 'CLERK’) AS EXPR$1
0 FROM EMP WHERE DEPTNO = 10 GROUP BY DEPTNO UNION ALL

SELECT DEPTNO, COUNT (*) FILTER (WHERE JOB = ‘CLERK’) AS EXPR$1
FROM EMP WHERE DEPTNO > 20 GROUP BY DEPTNO
) AS t12 GROUP BY DEPTNO

Figure 3: The optimized and original queries adapted from
the testPushCountFilterThroughUnion test case of Calcite.

value. Based on the values in the model, VERIEQL can simply follow
the schema to build the counterexample database. To further con-
firm that the counterexample is genuine, VERIEQL also executes
queries Q7 and Q2 on the counterexample using different DBMSs,
such as MySQL and MariaDB. If the query results are indeed dif-
ferent, VERIEQL returns the counterexample database to the user.
Otherwise, it sends an alert to the user and requests manual inspec-
tion because such a case is a good indication of implementation
bugs in the DBMS.

3 DEMONSTRATION SCENARIOS

We demonstrate three real-world scenarios where VERIEQL is useful
for proving and disproving equivalence of SQL queries. In general,
users can interact with VERIEQL in the following steps: (1) fill in
the text boxes with SQL queries and database schemas, (2) specify
a bound size for symbolic tables, (3) select a SQL dialect in the
drop-down menu to which the queries conform, and (4) click on
the Verify button to obtain the equivalence checking result.

3.1 Validating Query Optimizations

Query optimization constantly happens in relational database man-
agement systems. One essential and central requirement of query
optimization is to ensure that the optimized query is equivalent to
the original query. We demonstrate that VERIEQL can help validate
the correctness of query optimizations by checking the equivalence
between optimized and original queries.

Specifically, the user can provide a SQL query and its optimized
version as input to VERIEQL and ask to check their equivalence.
As a demonstration, we have collected a pair of queries from the
test suite of Apache Calcite [1], which is a framework for query
optimization. As shown in Figure 3, the queries Q1, Q2 are complex
and use many operations such as COALESCE, GROUP BY, UNION ALL,
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Table 1: Time to check query equivalence on different input
sizes for validating query optimizations.

2 3 4 5 6 7 8

98.5

Size | 1 9

Time (s) | 02 04 0.6

1.0 24 6.6 19.7 118.2

aggregate functions, etc. Furthermore, query Q is significantly
different from Q; syntactically, because it pushes the count filter
through the UNION ALL. Despite the challenges, VERIEQL can prove
that Q3 is equivalent to Q1 for any input tables up to size 4 within
one second. Furthermore, as shown in Table 1, VERIEQL can prove
equivalence of Q1 and Q2 up to input size 9 in 2 minutes.

3.2 Grading Queries on Coding Platforms

Existing online coding platforms such as LeetCode grade the sub-
mission through a small number of test cases, which typically suf-
fers from the low coverage issue. We demonstrate that VERIEQL can
be used to check the correctness of a submission to SQL program-
ming questions. Specifically, a submission is considered correct
if VERIEQL concludes that the submission and a standard solu-
tion are equivalent. If they are not equivalent, VERIEQL returns a
counterexample to help the programmer understand the mistake.

In general, the coding platform can provide the standard solution
and a user-submitted query of a SQL programming question as input
and ask VERIEQL to check their equivalence. As a concrete exam-
ple to demonstrate this usage scenario, we crawled user-submitted
queries and the ground-truth solution of LeetCode problems. Fig-
ure 4a shows such a pair of queries, where Q1 is a query submitted
by a user and Qs is the solution. The corresponding LeetCode prob-
lem asks to write a query that finds all customers who bought both
products A and B but did not buy product C. Here, the solution
Q2 uses two IN subqueries to find customers who bought A and B
and uses a NOT IN subquery to ensure the customer did not buy C.
However, the user-submitted query Q1 uses aggregation functions
to compute the number of products A or B and the number of prod-
uct C bought by each customer, and then returns the customers
accordingly. Qg is not correct, because it may return a customer
who bought two A’s or two B’s but not both.

VERIEQL can conclude query Q; is incorrect by disproving the
equivalence between Q1, Q2 and provide a counterexample database
as shown in Figure 4b. Running Q; on the database produces an
output in Figure 4c, but running Q2 returns an empty table.



WITH temp AS (SELECT DISTINCT A.customer_id, B.customer_name,
SUM (CASE WHEN A.product_name IN ('A’, 'B’) THEN 1 ELSE 0 END ) AS AB,
SUM (CASE WHEN A.product_name = "C’ THEN 1 ELSE 0 END ) AS C,
FROM orders A JOIN customers B ON A.customer_id = B.customer_id
GROUP BYA.customer_id )
SELECT customer_id, customer_name FROM temp WHERE AB >= 2 AND C = 0
SELECT customer_id, customer_name FROM customers
WHERE customer_id IN (
SELECT DISTINCT customer_id FROM orders WHERE product_name = A’
) AND customer_id IN (
SELECT DISTINCT customer_id FROM orders WHERE product_name = ‘B’
) AND customer_id NOT IN (
SELECT DISTINCT customer_id FROM orders WHERE product_name = 'C’
) ORDER BY customer_id

Q1

Q2

(a) User-submitted and solution queries from a LeetCode.

orders
order id | customer_ id | product name
0 0 B
1 0 B
customers
customer_id customer_name
0 Alice [ [ name |
T Bob [0 [ Alie |

(b) Counterexample database. (c) O1’s output.

Figure 4: Two non-equivalent queries from LeetCode.

Although VERIEQL can check equivalence of expressive queries,
it cannot partially grade queries or pinpoint incorrect statements.
We leave the extension to support such features as future work.

3.3 Finding Bugs in DBMSs

We also demonstrate that VERIEQL can reveal bugs in the optimizer
of DBMSs. Figure 5a shows a pair of user-submitted queries and
the solution collected from another LeetCode problem!. Here, Q1
and Q2 are not equivalent because the LEFT JOIN in Q preserves
all tuples from the friendship table, whereas Q1 uses JOIN, which
only retains those tuples that satisfy the join predicate. VERIEQL,
correspondingly, disproves the equivalence between Q1, Q2 and
thus concludes that the user-submitted query is incorrect. As evi-
dence, it also generates a counterexample database D, as shown in
Figure 5b. Running the query Q7 on D yields an empty table, but
running Q2 on D should return the table shown in Figure 5c.

However, the counterexample generator of VERIEQL alerts that
Q2 produces an empty table on D in MySQL when it tries to validate
that D is a genuine counterexample. The result is different from the
expected output from symbolic reasoning. After manual inspection,
we found an implementation bug in MySQL'’s latest release version
(v8.0.32). The MySQL maintenance team has confirmed this is a bug
at the serious severity level. This example also demonstrates VER-
1IEQL’s capability of finding previously unknown bugs in database
management systems.

4 RELATED WORK

Various approaches, such as formal methods, testing, and neural
reasoning, have been proposed to validate SQL equivalence. VER-
1IEQL takes a formal method approach. Compared to testing [2, 5]
and neural reasoning [12] techniques that cannot provide formal
guarantees, VERIEQL can guarantee that no tables up to a certain
size can distinguish the input queries if they are checked to be
equivalent. Other formal methods [3, 4, 8, 13] can provide simi-
larly bounded or full correctness guarantees. However, full-fledged

Ihttps://leetcode.com/problems/page-recommendations/
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SELECT DISTINCT page_id AS recommended_page
FROM (SELECT CASE WHEN user1_id = 1 THEN user2_id WHEN user2_id = 1
THEN user1_id ELSE NULLEND AS user_id FROM friendship)
AS tb1 JOIN likes AS tb2 ON tb1.user_id = tb2.user_id
WHERE page_id NOT IN (SELECT page_id FROM likes WHERE user_id = 1)
SELECT DISTINCT page_id AS recommended_page
FROM ( SELECT b.user_id, b.page_id FROM friendship a LEFT JOIN likes b
ON (a.user2_id = b.user_id OR a.user1_id=b.user_id)
AND (a.userl_id = 1 OR a.user2_id = 1)
WHERE b.page_id NOT IN (
SELECT DISTINCT (page_id) FROM likes WHERE user_id=1) ) T

(a) User-submitted and solution queries from LeetCode.

friendship

(o [t ]

likes

o |

(b) Counterexample database.  (c) O;’s expected output.

Figure 5: Queries from LeetCode that reveal the MySQL bug.

equivalence verification tools such as SPES [13] cannot provide
counterexamples to refute the equivalence. Among all prior work,
the most related is the COSETTE [3, 4] bounded equivalence checker.
However, CoseTTE works on none of the three examples in Sec-
tion 3, because it lacks support for conditional expressions such as
COALESCE and CASE WHEN. To the best of our knowledge, VERIEQL
supports the most expressive query language among all bounded
equivalence checking tools for SQL queries.
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